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Questions – Harmonic Analysis

1. Does harmonic information, through Fourier coefficients and related 
spectra, allow 

1. meaningful characteristic classification with standard approaches,

2. or delineate useful clusters? How does this relate to other approaches?
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Hypotheses & Procedures (1)

1.1)  Can harmonic analysis be applied to genetic sequences to classify characteristics with standard 
numerical approaches? 

• Hypothesis: The Fourier coefficients provide summary characteristics of genetic sequencing data 
suitable for classifying some attributes of the original data. 
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Hypotheses & Procedures (1)

1.2) Can harmonic analysis be applied to genetic sequences to indicate useful clusters? 

• Hypothesis: Clusters can be determined using standard approaches with the power spectra.
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Background - Genetic Sequence Data

• Has directional information and an associated observation in each category. 

• Usually stored in text-based files that contain ordered letters indicating the nucleotide at a specific
location. 
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Taking Fourier Transforms of Genomic Signals
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Taking Fourier Transforms of Genomic Signals
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Taking Fourier Transforms of Genomic Signals

𝑆 ℎ =෍

𝑡=1

𝑇

𝑠 𝑡 ⋅ 𝑒−2𝜋𝑗(𝑡−1)(ℎ−1)(𝑇
−1)

• 𝜋 is the ratio of circumference to diameter (Euclidean).

• 𝑒 = lim
𝑛→∞

1 + 𝑛−1 𝑛

• 𝑗2 = −1
• 𝑇 is the signal length,

• 𝑆(ℎ) the ℎ-element of the Fourier Series

• 𝑠(𝑡) the 𝑡-element of the signal.

Discrete Fourier Transform
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Scaling Genomic Power Spectra

• When comparing two or more sequences, a natural distance would be 

the Euclidean distance between the two sequence power spectra.

• Some Spectra will have to be Scaled to compute distances

• Even Scaling Procedure from Yin and Yau 2015 is implemented 

in this study.

𝐴𝑚 𝑘 = ൜
𝐴𝑛(𝑄)

𝐴𝑛 𝑅 + 𝑄 − 𝑅 (𝐴𝑛 𝑅 + 1 − 𝐴𝑛 𝑅 )
𝑄 ∈ ℤ
𝑄 ∉ ℤ

• Where, 𝑄 =
𝑘𝑛

𝑚
, 𝑅 = ቔ ቕ

𝑘𝑛

𝑚
, and 𝑚 and 𝑛 represent the longer 

and shorter lengths respectively. 
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Computing distance between genomic PS

119/17/2022



Data (SARS-CoV-2 Genomes)

• 1,397 virus genetic sequences for SARS-CoV-2 Genomes submitted 
from various collecting laboratories around the world.

• Sequences geographic origin information contained in the header for 
each observation. 

• GISAID Initiative collected and maintained sequence data for 
download and analysis. 
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Data (SARS-CoV-2 Genomes)

Location Observations (%)

Africa 35 (2.5)

East Asia 257 (18.4)

Europe 678 (48.5)

Middle 
East

153 (11)

North 
America

42 (3)

Oceania 38 (2.7)

South 
America

89 (6.4)

West Asia 105 (7.5)
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Multi-Class procedure results (10-fold CV – 138/fold)
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10 Fold CV for SARS-CoV-2 Data

• Random Forest (500 trees) - best regional classifier, 

• Better results for the DFT

• DFT Power Spectra provide better criteria, the intervals provide (accuracy estimation +/- standard error).
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Conclusions (1.1)

• Regional variations in virus data can be numerically summarized by 
the Power Spectrum.

• The relationship can later be learned by standard supervised approaches with 
up to 80% accuracy for differentiating SARS-CoV-2 genome regions. 

• Due to even-scaling procedure the PS computation procedure does not 
require alignment prior to computation.

• K-mer counting also does not require alignment, therefore k-mer count vectors 
(for k = 1,2,…,5) provide an alternative set of numerical values on which to 
categorize sequences.

• These k-mer count vectors do not provide as good of values (although there 
are admittedly less of them) for class differentiation. 
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Clustering Sequences

• Visualization of the sequences by their Power 
Spectra is possible through the usual techniques: 
• T-SNE
• PCA
• UMAP

• Statistical Procedures are also applicable to the 
power spectra, 
• MANOVA – Are the multivariate mean power 

spectra the same across classes or different?
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Clustering Sequences

Canonical Variables Plot (Created with Labels)

• The ability to apply numerical 

procedures to the power spectra is 

very useful in clustering the data

• The distance calculation for power 

spectra is a simple and quick 

procedure.

• Some other distance estimation 

techniques require alignment of 

sequences to each other prior to 

computation, these are much more 

expensive by comparison.
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Conclusions (1.2)

• The distance metrics produced by the PS capture different information 
from some more classical techniques (such as Markov approaches like 
the JC).

• A lot of the information can be summarized by a filtered subset of the 
power spectra, a few coefficients/components

• Supervised filters created by machine learners may not always provide 
the best differentiators.
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Predictive and Explanatory Modeling of  
Compositional Protein Data

Part 2/3
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Questions – Compositional Data

2. What are some statistical approaches for relating compositional glycan 
data to disease outcome?

1. Can a semi-parametric model utilizing multinomial likelihoods give reasonable 
classification estimates? 

2. Could a transition-like glycan rank proportion model provide a valid 
classification procedure, that selects important pairs of glycans? 
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Hypotheses & Procedures (2)

2.1) Can a semi-parametric model utilizing multinomial likelihoods give reasonable classification 
estimates? 

• Hypothesis: A Semi-Parametric approach which 

• combines parametric likelihood functions for capturing the composition contributions with 

• empirical class likelihood functions for non-composition can be used to classify data like this.
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Hypotheses & Procedures (2)

2.2) Could a transition-like glycan rank proportion model provide a valid classification procedure, that 
selects important pairs of glycans? 

• Class associated glycan rank probabilities can be used for prediction, and to determine the importance 
of pairings.
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Glycan Data (Compositional Nature)

• Developed analyses could 
be used for any 
compositional data.

• Glycan data is available for 
some tuberculosis patients, 

• Can compositional data 
models be used to 
differentiate disease 
outcomes? 
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Glycan Data (Compositional Nature)

• Compositions for 
three different 
treatments. 

• Three types of 
compositional 
data, three total 
compositions for 
modeling.
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Glycan Data

• 21 categories per 
composition

• The models proposed 
should be general 
enough to encode 
arbitrary numbers of 
compositions and 
composition elements. 
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Semi-Parametric Model

Within Composition Log Likelihood 

(Multinomial)

Outside Composition 

(Kernel Density Estimation within Classes)

Normalize to Combine 

Parametric/Nonparametric Score
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Semi-Parametric Model Results
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Semi-Parametric Model Results
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Glycan Rank Proportion

• In general, composition element rank proportions.
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Class B Class A

Class C Class D

Patient | glyA > B | gly A > C
1 | 1 | 0
2 | 1 | 1 
3 | 1 | 1 
4 | 1 | 0

Patient | glyA > B | gly A > C
1 | 0 | 0
2 | 0 | 1 
3 | 0 | 1 

Patient | glyA > B | gly A > C
1 | 1 | 1
2 | 1 | 1 
3 | 0 | 1 
4 | 1 | 1

Patient | glyA > B | gly A > C
1 | 0 | 0
2 | 1 | 1 
3 | 1 | 1 
4 | 0 | 0

Calculate Class 

Ranks Proportions 

and use in 
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GRP Prediction (Full Data)

• 57.3, 

• 58.2, 

• 58.6, 

• 65.3%
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Epigenetic Modeling (Methylation Profile Smoothing)

Part 3/3

Slides – [33-41]
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Questions – Methylation Smoothing

3. What are some capabilities of modeling epigenetic data? 

1. How frequently do point estimates produce inaccurate results? (Simulation 
Study) 

2. Do Read/Reference Length Play role in coverage variance? (Proof-Result)
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Hypotheses & Procedures (3)

3.1) How frequently do point estimates produce inaccurate results? 

• Hypothesis: The relationship between coverage and point estimate errors should be 
decreasing, with increased coverage point estimates will be incorrect in order less 
often.

3.2) Do Read/Reference Length Play role in coverage variance? 

• Hypothesis: There is a direct relationship between coverage variance and 
Read/Reference Length
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Background - Genetic Sequence Data

• Usually stored in FASTA Files

C    G    G C   T   G    C     A    T    G   C   T     T A   G   T
G    C    C G   A   C    G     T    A    C   G   A     A T   C   A

5` 3` 

(+ Sense)

(- Sense)

Reference SequenceRead Sequence Data

> Read 1 Information
ACGTACGAGCTGGTCCTAAGGTGTGCTCAGTATCCCTGGTATATGGT
> Read 2 Information
ACGTACGAGCTGGTCCACCGGTGTGCTCAGTATCCCTCCAGGATGGT
> Read 3 Information 
ACGTACGAGCTGGTCCTAAGGTGTGCTCAGTATCGCTGGTATATGGT

> Reference Information 
ACGTAGTGTCTCTATATACTCTCTCTCCGGGAGAGTATGA
TCTCTGGTCATGATATTAACTGTGCTATATACGGTATAAG
TATGCTACGTACGAGCTGGTCCTAAGGTGTGCTCAGTATC
CCTGGTATATGGTTATATCGTGTGGTCCCAAACATCTCGC
GCGCGCGCGCGCGCGTCATATTAATATACGAGTCATGTCA359/17/2022

Methylation is a epigenetic 

Cue which can give much 

more information!



Background - Genetic Sequence Data

Alignment: Form transcript by mapping read sequences to reference.

Assembly: Form a transcript by matching most likely overlapping reads.

Read Sequence Data

Assembled Transcript

Reference Sequence

Read Sequence Data

Aligned Transcript
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Background Epigenetic Signals

• Reads may be treated with Bisulfite first, so unmethylated cytosines
are converted, then methylation is detected at mismatched locations 
post alignment.
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Methylation Simulation Results 

• Settings:
• Number of Spots for 

Methylation: 1000

• Length of genetic 
sequence of interest: 
100,000

• Size of Reads (100)

• Generation:
• Methylation Ratio 

(True – Simulated) 
~Beta(0.5)
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Coverage Variance Results

• Minimizer of coverage variance occurs when read length in reference 
to reference is:
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Reference Sequence (Haploid Ex. 
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……
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Concluding Remarks

• Smoothing helps to determine more specific and potentially accurate 
methylation density estimates.

• The reference coverage is related to read length.

• Can be used to demap multi-mapped reads. 
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Questions? Suggestions? Critiques? 

Thankyou for Your Attention
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Backup Slides
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Coverage Variance Related To Read Length
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Coverage Variance Related To Read Length

9/17/2022 51



Coverage Variance Related To Read Length
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Background – Encoding Genomic  Signals

• Representing a 4-category value observed by position

• numerically,

• preserving repetitive elements for subsequent analysis.

Let 𝑖 denote the locus of the 𝑖th position in a string representing a genomic signal, 
and 𝐺𝑖 the actual base observed at that position, two possible encodings may be 
represented 

𝐺𝑖 ≡
′ 𝑋′ is 1 (True) if the 𝑖th nucleotide is 𝑋 and 0 otherwise

𝑆𝑖 =

𝐺𝑖 ≡ ′𝐴′

𝐺𝑖 ≡
′ 𝐶′

𝐺𝑖 ≡
′ 𝐺′

𝐺𝑖 ≡
′ 𝑇′

or  𝑆𝑖 =
𝐺𝑖 ≡

′ 𝐶′

𝐺𝑖 ≡
′ 𝐺′

−
𝐺𝑖 ≡

′ 𝐴′

𝐺𝑖 ≡
′ 𝑇′
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Hypotheses & Procedures (1)

1.3) To provide some statistically valid approach to comparing autocorrelation among ensembles?

• Hypothesis: A suitable derivation for determining the likelihood ratio test distribution is provided 
and an algorithm for computing p-values is provided.

Sequence Data 

(FASTA/Q)

Encoder

(2D or 4D)

Fourier 

Transform

Lab
e

ls

Separate 
Fourier 

Series by 
Class

Compute Complex 
Gaussian MLEs within 

class, and across classes.

Determine likelihood ratio 
test statistic, compare to 
appropriate chi-square 

distribution
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Testing Sequence Data By Fourier Coefficients

• For a random variable 𝒁 such as a specific frequency transform coefficient of a signal (recall these are r-

dimensional, usually 2/4)

• Where the Multivariate Normal Distribution is given by,
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Testing Sequence Data By Fourier Coefficients

• It can be shown that the MLE for these parameters are given
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Testing Sequence Data By Fourier Coefficients

• Which Allows Calculation of the Test Statistic 

Log-likelihood among all classes Log-likelihood within all classes

Likelihood Ratio Test Statistic

• Distributed according to the chi-square distribution with degrees of freedom given by the number of classes –

1.
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Conclusions (1.3)

• The Fourier coefficients provide a numerical summary that can be 
used in this testing framework to give a statistical measure of the 
likelihood of observing data as or more extreme than observed if the 
data all came from the same class as opposed to different classes. 
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Correlation of Pairwise Distances
• There are two primary groupings of 

the clustering procedures (distance 

calculations) provided for the 

sequences. 

• The first block includes the majority 

of the distance measures (from TV to 

T92) many of these distances are 

highly correlated with each other, 

these are all alignment requiring 

procedures. 

• The Fourier Transform distance 

procedure (DFTPS) is contained by 

the second main block, which shows 

similarity between distances produced 

by the indel and indelblock distances, 

and almost no correlation with five-

mer frequency distances. 619/17/2022



Hypotheses & Procedures (1)

1.2) Can harmonic analysis be applied to genetic sequences to achieve similar clustering capabilities 
as other more intensive approaches? 

• Sub-Hypothesis: Some Filtered Subset of the Power Spectra may provide a large part of the 
overall information contained in the full power spectra.

Sequence Data 

(FASTA/Q)

Encoder

(2D or 4D)

Fourier 

Transform

Power Spectral 

Average

Prepare Pairwise 

distances

Compare

Correlation

Filter 1 – High Variance Prepare 

Pairwise 

distances

Filter 2 – Neural Network

Filter 3 – PC High Variance
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Filtering of Power Spectrum
• Subsets of coefficients can be used to achieve similar distances as the 

full set, three such techniques are also tested
• Filter 1 – Select top Subset of PS coefficients in terms of variance across class

• MVF – Minimum Variance Filter

• Filter 2 – Select top Variance PS Coefficients and compute PCs 

• Filter 3 – Train NN to identify characteristic of interest and extract filters. 
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Partial Least Squares (1)
• PLS Models determine the 

principal components of 
the data (glycan assay 
data) and the outcomes, 
which when categorical 
are encoded in a class 
membership matrix. 

• The scores for the data 
and outcomes are related 
using linear regression.

• maximize the variance 
within each block and the 
correlation between the 
data and the outcome.
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Partial Least Squares (2)
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Partial Least Squares (3)
• PLS is also a predictive 

procedure, and once 
trained can be used to 
differentiate the class of 
an observation.

• It does so for a user 
specified number of 
components.

• Sometimes known as 
“Supervised Principal 
Components”.
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Principal Components

679/17/2022



Semi-Parametric Model Full Validation
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High Five Variance Only (GRP)

• whole - 50%, fab -
43%, fc - 48%, and 
combined 55%
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Reference Sequence (Haploid Ex. GRCh28)

Alignment – Tabulate Single Mapped Read Set 
(Example Bisulfite Reads)

Indicates Methylated (Cytosine Not Converted)
Indicates Not Methylated (Cytosine Converted to Thymine)
CpG Site (Site of potential Methylation)

……

Determination of Potential Epigenetic Binding Sites
(Example CpGs in Bisulfite)

…… Reference Sequence (Haploid Ex. GRCh28)

Calculate Point Estimates, and Produce Smoothed 
Profile

Reference Sequence (Haploid Ex. GRCh28)

Alignment – Multi-Mapped Read Set 
(Example Bisulfite Reads)

Indicates Methylated (Cytosine Not Converted)
Indicates Not Methylated (Cytosine Converted to Thymine)
CpG Site (Site of potential Methylation)

……

…… Reference Sequence (Haploid Ex. GRCh28)

Indicates Methylated (Cytosine Not Converted)
Indicates Not Methylated (Cytosine Converted to Thymine)

Isolate Most Likely Positions



Some Filter Charts
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