Randomness Properties of Cryptographic Hash Functions

Micah A. Thornton

Southern Methodist University Bobby B. Lyle School of Engineering

August 8, 2017

Outline

- Introduction
 - Overview
 - Background
- 2 Methodology
 - A Posteriori Extractor
 - Experimental Setup
- Results
 - Entropy
 - Serial Correlation
- 4 Conclusions
 - Future Work

Outline

- Introduction
 - Overview
 - Background
- 2 Methodology
 - A Posteriori Extractor
 - Experimental Setup
- Results
 - Entropy
 - Serial Correlation
- 4 Conclusions
 - Future Work

Primary Hypothesis

Hypothesis

Assuming a **cryptographic hash** is being used to increase the **apparent randomness** of a data set, It is possible to **formulate metrics** to choose the best hash for this purpose.

Conclusion

The hypothesis holds, and suitable metrics were formulated and verified.

Secondary Hypothesis

Secondary Hypothesis

The **A Posteriori** method described in this research is a valid approach for entropy extraction of a **weak random source** in the form of inter packet delays between packet arrivals.

Conclusion

The method proposed can indeed function as a randomness extractor on network timing data.

Cryptographic Hash Functions

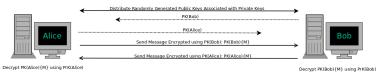
14 Common Cryptographic Hashes

Blake 2 32-bit(bl2s)	Blake 2 64-bit(bl2b)	MD5(md5)
SHA-1(s1)	SHA-2 224-bit(s2224)	SHA-2 512-bit(s2512)
SHA-2 256-bit(s256)	SHA-3 224-bit(s3224)	SHA-3 256-bit(s3256)
SHA-3 384-bit(s3384)	SHA-3 512-bit(s3512)	SHA-2 384-bit(s384)
shake 128-bit(ske128)	shake 256-bit(ske256)	, ,

- Cryptographic hashes are used in many security applications.
- The bit size of the function represents the length of the output string.
- In this work, only portions of bit streams were fed to the hash function at a time, according to output length.

Modern Applications of Random Values

Example application of random values to public key cryptography



- In cryptography:
 - RSA: RNs are used to generate primes (No RNG specified)
 - 3-DES: RNs used as key-bundle (Specific RNG ANSI x9.31)
 - Blowfish: RN used a 52-bit key (No RNG specified)
 - Twofish: RN used as up to 256-bit key (No RNG specified)
 - AES: RNs used as key-IV-salt bundle (NIST specified RNG)
- In science:
 - Statistics: Taking random sample
 - Analysis: Extraction of signal from noise
 - Simulation: Providing a spectrum of inputs

Approaches to Random Generation

Giuseppe Lodovico Lagrangia

- Pseudo-Random Number Generators (PRNGs)
 - Shift Registers (LFSR, NLFSR) -Golomb (1948)
 - Linear Congruential Generators (LCG) - D. H. Lehmer (1949)
 - Blum Blum Shub (BBS) -Blum,Blum, and Shub (1986)
 - Mersenne Twister (MT) -Matsumoto & Nishimura (1997)
- True Random Number Generators (TRNGs)
 - Atmospheric Noise (random.org)
 - Radioactive Decay (hotbits.org)

if T1 > T2:

Entropy Extractors



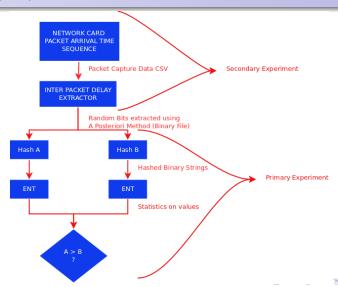
record one
$$T_1=P_2-P_1=15-10=5 \qquad \begin{array}{c} \text{if T1}<\text{T2:}\\ \text{record zero} \end{array}$$

$$T_2=P_4-P_3=27-20=7 \qquad \text{if T1}=\text{T2:}\\ \text{record nothing} \end{array}$$

Outline

- Introduction
 - Overview
 - Background
- 2 Methodology
 - A Posteriori Extractor
 - Experimental Setup
- Results
 - Entropy
 - Serial Correlation
- 4 Conclusions
 - Future Work

Process Flow



A Posteriori Extraction Method

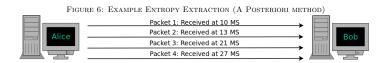
Given
$$X$$
 such that $X = \{x_1, x_2, x_3, ..., x_n\}$
$$Q_2 = \{x \in X | P(X > x) = P(X < x) = 0.5\}$$

$$R_{\psi}(x_i) = r_i = \begin{cases} 1 & x_i > Q_2 \\ 0 & x_i < Q_2 \end{cases}$$

Hence, the entropy is extracted into the binary value: $r_1r_2r_3r_4...r_n$

Note: alternative measures of center can be used in the place of Q_2 but only Q_2 maximizes the extracted entropy

A Posteriori Extractor for Inter-Packet Delays Example



$$T_1 = P_2 - P_1 = 13 - 10 = 3$$
 for T_i :
if $T_i > Q_2$:
record one
else if $T_i < Q_2$:
record zero
 $T_3 = P_4 - P_3 = 27 - 21 = 6$ else:
 $Q_2 = 6$

In this small example the extracted random string is 01 = 1

Experimental Set-Up

- Inter-Packet Timings: time differences between packet arrivals
- \bullet Arrival times (in μs) captured by Wireshark & TCPdump
- Five machines used:

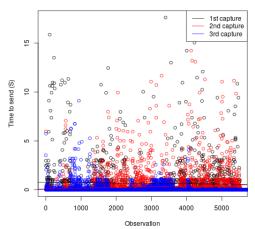
Machine	OS	CPUs	RAM	Speed
1	Windows 10	2	8 Gb	2.35 GHz
2	MacOS 10.12	2	8 Gb	2.6 GHz
3	Ubuntu 16.10	8	16 Gb	2.6 GHz
4	Ubuntu 17.04	8	16 Gb	2.8 GHz
5	Ubuntu 17.04	8	32 Gb	3.2 GHz

Outline

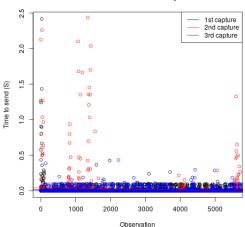
- Introduction
 - Overview
 - Background
- 2 Methodology
 - A Posteriori Extractor
 - Experimental Setup
- Results
 - Entropy
 - Serial Correlation
- 4 Conclusions
 - Future Work

Initial Packet Capture Timings

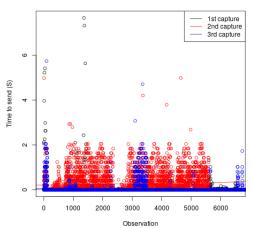
Windows 10 Packet Captures



Max OS X 10.12 Packet Captures



Ubuntu Linux 16.10 Packet Captures



Before and After on an Idle Network

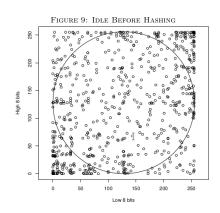
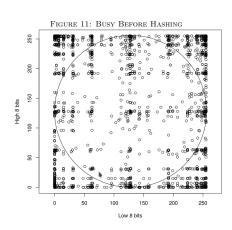
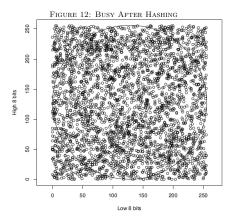


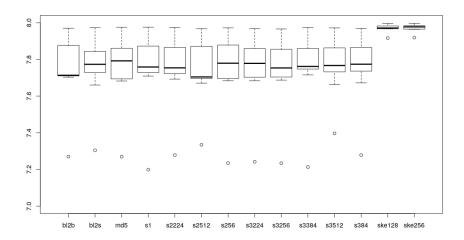
Figure 10: Idle After Hashing 150 200 250 Low 8 bits

Before and After on Busy Network

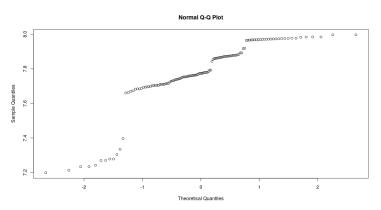




Boxplot of Entropy Values for Common Hashes



Checking the ANOVA Assumptions for Entropy (Normality)



Shapiro Wilks Test for Normality (Reject Null that data are normal)

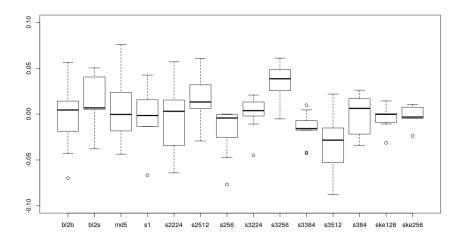
W	0.81796
p-val	3.418e-11**

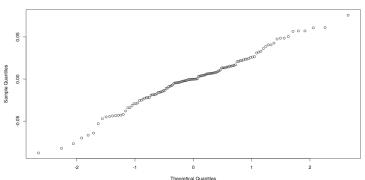
Kruskal-Wallis rank sum test

Kruskal-Wallis (Non Parametric ANOVA) Results

```
data: x and group
Kruskal-Wallis chi-squared = 30.198, df = 13, p-value = 0
                            Comparison of x by group
                                 (No adjustment)
Col Mean-
Row Mean
                  bl2b
                             b12s
                                          md5
                                                      s1
    bl2s
             -1.207029
               0.1137
             -0.464738
                         0.742291
     md5
               0.3211
                           0.2290
            -0.232369
                         0.974660
                                    0.232369
               0.4081
                           0.1649
                                       0.4081
```

Boxplot of Serial Correlations for Common Hashes





Shapiro Wilks Test for Normality (Accept Null that data are normal)

<i>y</i> (1		
W	0.98486	
p-val	0.1741	

Checking the ANOVA Assumptions for SC (Homosce.)

Levene test for Homoscedasticity (Accept Null that data are HS)

F	1.4785
p-val	.1364

ANOVA Results for Serial Correlation

```
Tukey multiple comparisons of means 95\% \ family-wise \ confidence \ level Fit: aov(formula = dfB\$Serial.Correlation \sim dfB\$Hash) Df \ Sum \ Sq \ Mean \ Sq \ F \ value \ Pr(>F) dfB\$Hash \qquad 13 \ 0.03032 \ 0.0023321 \qquad 2.938 \ 0.00104 \ ** Residuals \qquad 112 \ 0.08891 \ 0.0007938
```

\$'dfB\$Hash'

Outline

- Introduction
 - Overview
 - Background
- 2 Methodology
 - A Posteriori Extractor
 - Experimental Setup
- Results
 - Entropy
 - Serial Correlation
- 4 Conclusions
 - Future Work

Primary Hypothesis

Hypothesis

Assuming a **cryptographic hash** is being used to increase the **apparent randomness** of a data set, It is possible to **formulate metrics** to choose the best hash for this purpose.

Conclusion

The hypothesis holds, and suitable metrics were formulated and verified.

Secondary Hypothesis

Secondary Hypothesis

The **A Posteriori** method described in this research is a valid approach for entropy extraction of a **weak random source** in the form of inter packet delays between packet arrivals.

Conclusion

The method proposed can indeed function as a randomness extractor on network timing data.

Future Steps

- Perform analysis looking at different metrics (STS/DieHarder results)
- Perform analysis with wider variety of initial strings from different sources.
- 3 Examine mean differences in theoretical light.
- Apply analysis to more types of one-way functions.

Thankyou For your Time

QUESTIONS??

BACKUP SLIDES

A Posteriori Maximizes Shannon's Entropy (1)

[PROOF:]

Given a supposedly random sample

$$X = \{x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}, ..., x_n \in \mathbb{R}\}\$$

We define the random variable α in terms of the median (or second quartile) of X

$$\alpha : \mathbb{R} \to \mathbb{B}$$

$$P(\alpha = 0) = p_0(\alpha) = \frac{|\{x | x < Q_2(X)\}|}{|X|} = \frac{1}{2}$$

$$P(\alpha = 1) = p_1(\alpha) = \frac{|\{x|x > Q_2(X)\}|}{|X|} = \frac{1}{2}$$

The formula for the entropy of a string of Bernoulli trials (or a 'bitstring') is given:

$$H(p_0(b),p_1(b)) = -(p_0(b) \log_2(p_0(b)) + p_1(b) \log_2(p_1(b)))$$

We can maximize the Entropy function as so:

$$\nabla H(\rho_0,\rho_1) = \Big(\frac{\partial H}{\partial \rho_0},\frac{\partial H}{\partial \rho_1}\Big) = \Big(-\frac{\ln(\rho_0)+1}{\ln(2)},-\frac{\ln(\rho_1)+1}{\ln(2)}\Big)$$

Maximizing we find

$$\frac{-\ln(\rho_0) - 1}{\ln(2)} = 0 \implies \ln(\rho_0) = -1 \implies \rho_0 = \frac{1}{e}$$
$$\frac{-\ln(\rho_1) - 1}{\ln(2)} = 0 \implies \ln(\rho_1) = -1 \implies \rho_1 = \frac{1}{e}$$

A Posteriori Maximizes Shannon's Entropy (2)

This seemingly odd result is because there is an *inherent* dependence among these two values, expressed mathematically as $p_0+p_1=1$, in our first maximization attempt, we neglected to account for the hard-restraint $p_0+p_1=1$ In constraining the original optimization we have the following system:

$$\frac{-\ln(\rho_1) - 1}{\ln(2)} = 0 = \frac{-\ln(\rho_0) - 1}{\ln(2)}$$

$$p_1 = 1 - p_0$$

$$\frac{-\ln(1 - \rho_0) - 1}{\ln(2)} = \frac{-\ln(\rho_0) - 1}{\ln(2)} \implies 1 - \rho_0 = \rho_0$$

$$\implies \rho_0 = 0.5 \implies \rho_1 = 1 - 0.5 = 0.5$$

Because $p_0(\alpha) = p_1(\alpha) = 0.5$ by definition, we have maximized the entropy function for the constraint

$$p_1 + p_0 = 1$$
.

Entropy (1/4)

- Entropy is related to the idea of self-information, but the two are not synonymous.
- The self-information of a particular event is a measure of how much information is contained by that event occurring.
- Events that occur more frequently have lower self-information.
- Self-Information is inversely proportional the the frequency of an event.
- Intuitively, we may define it as the following:

$$A \in S \implies I(A) = \frac{1}{P(A)} = \frac{1}{\frac{\|A\|}{\|S\|}}$$
 (1)

Entropy (2/4)

- This measure is not additive under the intersection operator.
- in other words, the self information of event B + the self information of event A should be equivalent to the self information of the intersection of A and B.
- We can see that our intuitive definition does not satisfy this property.

$$(I(A) = \frac{1}{P(A)}) \wedge (I(B) = \frac{1}{P(B)})$$
 (2)

$$\implies I(A \cap B) = \frac{1}{P(A) \cdot P(B)} \tag{3}$$

$$I(A) + I(B) = \frac{P(A) + P(B)}{P(A) \cdot P(B)} \neq \frac{1}{P(A) \cdot P(B)}$$
 (4)

Entropy (3/4)

- Hence our intuitive definition of self information does not satisfy the additive property.
- We are moved to consider a different measure

$$I(A) = In\left(\frac{1}{P(A)}\right)I(B) = In\left(\frac{1}{P(B)}\right)$$
 (5)

$$I(A \cap B) = In\left(\frac{1}{P(A) \cdot P(B)}\right) \tag{6}$$

$$I(A) + I(B) = In\left(\frac{1}{P(A)}\right) + In\left(\frac{1}{P(B)}\right) = In\left(\frac{1}{P(A) \cdot P(B)}\right)$$
 (7)

Entropy (4/4)

- So we now have a definition of self-information.
- Because this definition is based on the pmf it is a random variable
- As a random variable we can take the expected value

$$H(X) = E(I(X)) \tag{8}$$

- The above measure is known as the entropy of an event X.
- So we can calculate the entropy of a bit string as:

$$H(X) = -\sum_{i=0}^{n} P(X)I(X)$$
 (9)

$$= -(P(X=0)Ig(P(X=0)) + P(X=1)Ig(P(X=1)))$$
 (10)

Entropy Example

- As an example of bitstring entropy calculation consider the bitstring 110110101101101110111110001010101101
- There are 35 bits in the bit string, 22 of which are 1's and 13 of which are 0's
- P(X=1) = 0.628571429
- P(X=0) = 0.371428571
- H(X) = -(-0.9517626753) = 0.9517626753