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Primary Hypothesis

Hypothesis

Assuming a cryptographic hash is being used to increase the
apparent randomness of a data set, It is possible to formulate
metrics to choose the best hash for this purpose.

Conclusion

The hypothesis holds, and suitable metrics were formulated and
verified.
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Secondary Hypothesis

Secondary Hypothesis

The A Posteriori method described in this research is a valid
approach for entropy extraction of a weak random source in the
form of inter packet delays between packet arrivals.

Conclusion

The method proposed can indeed function as a randomness
extractor on network timing data.
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Cryptographic Hash Functions

14 Common Cryptographic Hashes
Blake 2 32-bit(bl2s) Blake 2 64-bit(bl2b) MD5(md5)
SHA-1(s1) SHA-2 224-bit(s2224) SHA-2 512-bit(s2512)
SHA-2 256-bit(s256) SHA-3 224-bit(s3224) SHA-3 256-bit(s3256)
SHA-3 384-bit(s3384) SHA-3 512-bit(s3512) SHA-2 384-bit(s384)
shake 128-bit(ske128) shake 256-bit(ske256)

Cryptographic hashes are used in many security applications.

The bit size of the function represents the length of the
output string.

In this work, only portions of bit streams were fed to the hash
function at a time, according to output length.
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Modern Applications of Random Values

Example application of random values to public key cryptography

In cryptography:
RSA: RNs are used to generate primes (No RNG specified)
3-DES: RNs used as key-bundle (Specific RNG ANSI x9.31)
Blowfish: RN used a 52-bit key (No RNG specified)
Twofish: RN used as up to 256-bit key (No RNG specified)
AES: RNs used as key-IV-salt bundle (NIST specified RNG)

In science:
Statistics: Taking random sample
Analysis: Extraction of signal from noise
Simulation: Providing a spectrum of inputs
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Approaches to Random Generation
Giuseppe Lodovico Lagrangia

Pseudo-Random Number Generators
(PRNGs)

Shift Registers (LFSR, NLFSR) -
Golomb (1948)
Linear Congruential Generators
(LCG) - D. H. Lehmer (1949)
Blum Blum Shub (BBS) -
Blum,Blum, and Shub (1986)
Mersenne Twister (MT) -
Matsumoto & Nishimura (1997)

True Random Number Generators
(TRNGs)

Atmospheric Noise (random.org)
Radioactive Decay (hotbits.org)

Micah A. Thornton Randomness Properties of Cryptographic Hash Functions



Introduction
Methodology

Results
Conclusions

Overview
Background

Entropy Extractors

Entropy Extraction (The Hotbits way)

T1 = P2 − P1 = 15− 10 = 5

T2 = P4 − P3 = 27− 20 = 7

if T1 > T2:
record one

if T1 < T2:
record zero

if T1 = T2:
record nothing
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A Posteriori Extraction Method

Given X such that X = {x1, x2, x3, ..., xn}

Q2 = {x ∈ X |P(X > x) = P(X < x) = 0.5}

Rψ(xi ) = ri =

{
1 xi > Q2

0 xi < Q2

Hence, the entropy is extracted into the binary value: r1r2r3r4...rn

Note: alternative measures of center can be used in the place of Q2

but only Q2 maximizes the extracted entropy
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A Posteriori Extractor for Inter-Packet Delays Example

Figure 6: Example Entropy Extraction (A Posteriori method)

T1 = P2 − P1 = 13− 10 = 3

T2 = P3 − P2 = 21− 13 = 8

T3 = P4 − P3 = 27− 21 = 6

Q2 = 6

for Ti :
if Ti > Q2:

record one
else if Ti < Q2:

record zero
else:

record nothing

In this small example the extracted random string is 01 = 1
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Experimental Set-Up

Inter-Packet Timings: time differences between packet arrivals

Arrival times (in µs) captured by Wireshark & TCPdump

Five machines used:

Machine OS CPUs RAM Speed
1 Windows 10 2 8 Gb 2.35 GHz

2 MacOS 10.12 2 8 Gb 2.6 GHz

3 Ubuntu 16.10 8 16 Gb 2.6 GHz

4 Ubuntu 17.04 8 16 Gb 2.8 GHz

5 Ubuntu 17.04 8 32 Gb 3.2 GHz
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Initial Packet Capture Timings
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Before and After on an Idle Network

Figure 9: Idle Before Hashing Figure 10: Idle After Hashing

Micah A. Thornton Randomness Properties of Cryptographic Hash Functions



Introduction
Methodology

Results
Conclusions

Entropy
Serial Correlation

Before and After on Busy Network

Figure 11: Busy Before Hashing Figure 12: Busy After Hashing
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Boxplot of Entropy Values for Common Hashes
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Checking the ANOVA Assumptions for Entropy (Normality)

Shapiro Wilks Test for Normality (Reject Null that data are normal)

W 0.81796

p-val 3.418e-11**
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Kruskal-Wallis (Non Parametric ANOVA) Results
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Boxplot of Serial Correlations for Common Hashes
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Shapiro Wilks Test for Normality (Accept Null that data are normal)

W 0.98486

p-val 0.1741
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Checking the ANOVA Assumptions for SC (Homosce.)

Levene test for Homoscedasticity (Accept Null that data are HS)

F 1.4785

p-val .1364
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ANOVA Results for Serial Correlation
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Primary Hypothesis

Hypothesis

Assuming a cryptographic hash is being used to increase the
apparent randomness of a data set, It is possible to formulate
metrics to choose the best hash for this purpose.

Conclusion

The hypothesis holds, and suitable metrics were formulated and
verified.
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Secondary Hypothesis

Secondary Hypothesis

The A Posteriori method described in this research is a valid
approach for entropy extraction of a weak random source in the
form of inter packet delays between packet arrivals.

Conclusion

The method proposed can indeed function as a randomness
extractor on network timing data.
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Future Steps

1 Perform analysis looking at different metrics (STS/DieHarder
results)

2 Perform analysis with wider variety of initial strings from
different sources.

3 Examine mean differences in theoretical light.

4 Apply analysis to more types of one-way functions.
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A Posteriori Maximizes Shannon’s Entropy (1)
[PROOF:]

Given a supposedly random sample

X = {x1 ∈ R, x2 ∈ R, x3 ∈ R, ..., xn ∈ R}

We define the random variable α in terms of the median (or second quartile) of X

α : R→ B

P(α = 0) = p0(α) =
|{x|x < Q2(X )}|

|X |
=

1

2

P(α = 1) = p1(α) =
|{x|x > Q2(X )}|

|X |
=

1

2

The formula for the entropy of a string of Bernoulli trials (or a ‘bitstring’) is given:

H(p0(b), p1(b)) = −(p0(b)log2(p0(b)) + p1(b)log2(p1(b)))

We can maximize the Entropy function as so:

∇H(p0, p1) =
( ∂H
∂p0

,
∂H

∂p1

)
=

(
−

ln(p0) + 1

ln(2)
,−

ln(p1) + 1

ln(2)

)
Maximizing we find

−ln(p0)− 1

ln(2)
= 0 =⇒ ln(p0) = −1 =⇒ p0 =

1

e

−ln(p1)− 1

ln(2)
= 0 =⇒ ln(p1) = −1 =⇒ p1 =

1

e
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A Posteriori Maximizes Shannon’s Entropy (2)

This seemingly odd result is because there is an inherent dependence among these two values, expressed
mathematically as p0 + p1 = 1, in our first maximization attempt, we neglected to account for the hard-restraint
p0 + p1 = 1 In constraining the original optimization we have the following system:

−ln(p1)− 1

ln(2)
= 0 =

−ln(p0)− 1

ln(2)

p1 = 1− p0

−ln(1− p0)− 1

ln(2)
=
−ln(p0)− 1

ln(2)
=⇒ 1− p0 = p0

=⇒ p0 = 0.5 =⇒ p1 = 1− 0.5 = 0.5

Because p0(α) = p1(α) = 0.5 by definition, we have maximized the entropy function for the constraint

p1 + p0 = 1.
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Entropy (1/4)

Entropy is related to the idea of self-information, but the
two are not synonymous.

The self-information of a particular event is a measure of how
much information is contained by that event occurring.

Events that occur more frequently have lower self-information.

Self-Information is inversely proportional the the frequency of
an event.

Intuitively, we may define it as the following:

A ∈ S =⇒ I (A) =
1

P(A)
=

1
‖A‖
‖S‖

(1)

Micah A. Thornton Randomness Properties of Cryptographic Hash Functions



Introduction
Methodology

Results
Conclusions

Future Work

Entropy (2/4)

This measure is not additive under the intersection operator.

in other words, the self information of event B + the self
information of event A should be equivalent to the self
information of the intersection of A and B.

We can see that our intuitive definition does not satisfy this
property.

(I (A) =
1

P(A)
) ∧ (I (B) =

1

P(B)
) (2)

=⇒ I (A ∩ B) =
1

P(A) · P(B)
(3)

I (A) + I (B) =
P(A) + P(B)

P(A) · P(B)
6= 1

P(A) · P(B)
(4)
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Entropy (3/4)

Hence our intuitive definition of self information does not
satisfy the additive property.

We are moved to consider a different measure

I (A) = ln

(
1

P(A)

)
I (B) = ln

(
1

P(B)

)
(5)

I (A ∩ B) = ln

(
1

P(A) · P(B)

)
(6)

I (A) + I (B) = ln

(
1

P(A)

)
+ ln

(
1

P(B)

)
= ln

(
1

P(A) · P(B)

)
(7)
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Entropy (4/4)

So we now have a definition of self-information.

Because this definition is based on the pmf it is a random
variable

As a random variable we can take the expected value

H(X ) = E (I (X )) (8)

The above measure is known as the entropy of an event X.

So we can calculate the entropy of a bit string as:

H(X ) = −
n∑

i=0

P(X )I (X ) (9)

= −(P(X = 0)lg(P(X = 0)) + P(X = 1)lg(P(X = 1))) (10)
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Entropy Example

As an example of bitstring entropy calculation consider the
bitstring 11011010110110111011110001010101101

There are 35 bits in the bit string, 22 of which are 1’s and 13
of which are 0’s

P(X=1) = 0.628571429

P(X=0) = 0.371428571

H(X) = -(-0.9517626753) = 0.9517626753

Micah A. Thornton Randomness Properties of Cryptographic Hash Functions


	Introduction
	Overview
	Background

	Methodology
	A Posteriori Extractor
	Experimental Setup

	Results
	Entropy
	Serial Correlation

	Conclusions
	Future Work


