
RANDOMNESS PROPERTIES OF CRYPTOGRAPHIC HASH FUNCTIONS

Approved by:

Dr. Theodore Manikas

Dr. Jennifer Dworak

Dr. Eric Larson

Dr. Suku Nair

RANDOMNESS PROPERTIES OF CRYPTOGRAPHIC HASH FUNCTIONS

A Thesis Presented to the Graduate Faculty of the

Lyle College: School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Masters of Science

with a

Major in Computer Engineering

by

Micah A. Thornton

(B.S. Statistics, Southern Methodist University, 2017)
(B.S. Computer Engineering, Southern Methodist University, 2017)

-

ACKNOWLEDGMENTS

I want to thank my advisor and friend Dr. Theodore Manikas, for his patience

and assistance in the preparation of this work. I would like to thank my family for all

of their love and support. I would also like to thank the members of my Committee.

iii

Thornton , Micah A. B.S. Statistics, Southern Methodist University, 2017
B.S. Computer Engineering, Southern Methodist University, 2017

Randomness Properties of Cryptographic Hash Functions

Advisor: Professor Theodore Manikas
Masters of Science degree conferred -
Thesis completed -

The work in this thesis seeks to answer the following: Assuming a cryptographic

hash is being used to increase the apparent randomness of a data set, is it possible

to formulate metrics to choose the best hash for this purpose? Towards this ends

standard metrics provided by the ENT utility (entropy and serial correlation) were

analyzed in conjunction with different cryptographic hash functions, and the results

of several statistical analysis on the metrics are presented. The work in this the-

sis concludes that the hypothesis holds, and suitable metrics were formulated and

verified. As a side experiment, a new entropy extractor was formulated and tested.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . viii

CHAPTER

1. INTRODUCTION . 1

1.1. Overview . 1

1.2. Random Number Generators . 2

1.2.1. Linear Feedback Shift Register (LFSR) . 3

1.2.2. Linear Congruential Generators (LCG) . 5

1.2.3. Generalized Feedback Shift Registers (GFSR) 5

1.2.4. True Random versus Pseudo-Random Number Generators . . 5

1.2.5. Cryptographically Secure Pseudo-Random Number Generators 8

1.3. The definition of Random . 9

1.3.1. Lack of Knowledge . 14

1.3.2. Lack of Structure . 16

1.3.3. Lack of Capability . 18

1.4. Structure . 20

2. RELATED WORK . 21

3. METHODOLOGY . 26

3.1. ENTROPY . 26

3.1.1. Derivation . 26

3.1.2. Extraction . 29

3.1.2.1. A Posteriori Coin-Flip . 29

v

3.1.2.2. Extemporaneous Coin-Flip . 32

3.1.2.3. A Priori Coin-Flip . 33

3.2. RANDOM SOURCE: NETWORK . 35

4. RESULTS. 38

4.1. Packet Captures. 38

4.2. ANALYSIS . 46

5. CONCLUSION. 53

5.1. Future Work . 53

APPENDIX

A. Hashed Network Data . 55

B. Kruskal-Wallis Dunn Confidence Intervals for mean differences 65

C. Tukey Honestly Significant Differences . 72

D. Bonferroni Multiple Comparisons . 78

REFERENCES . 80

vi

LIST OF FIGURES

Figure Page

1.1. Drawing samples Reveals an underlying distribution 11

1.2. Standard Normal Distribution for Reference . 13
1.3. Bimodal Normal Distribution for Reference . 14
1.4. Trimodal Normal Distribution for Reference . 15
1.5. Uniform Distribution for Reference . 16
1.6. Probability Density Function for Normally Distributed Random Vari-

ables . 17
4.1. Windows Packet Capture Inter Packet Delays . 39

4.2. Mac OSX Packet Capture Inter Packet Delays . 40

4.3. Linux Packet Capture Inter Packet Delays . 41

4.4. Entropy in bits/byte for hashed strings (n = 9 per hash) 42

4.5. Serial Correlation for hashed strings (n = 9 per hash) 43

4.6. Chi-Squared for hashed strings (n = 9 per hash) . 44

4.7. qq-plot of Entropy . 45

4.8. qq-plot of Serial Correlation . 46

vii

LIST OF TABLES

Table Page

4.1. Shapiro-Wilks Test for Normality of Entropies . 43

4.2. Kruskal-Wallis Test for equivalent population Entropies 44

4.3. Shapiro-Wilks Test for Normality of Serial Correlations 45

4.4. Levene’s test for homoscedasticity of serial correlation 47

4.5. χ2 p-value interpretations . 51

A.1. Pure Entropic String ENT results . 55

viii

For Isaac

R.I.P (1995-2017)

Chapter 1

INTRODUCTION

1.1. OverviewA Cryptographic hash function is a function that is easy to compute over the

members of the domain, but is sufficiently hard (non-poly time) to compute the inverse

on the members of the co-domain of the function. The number of collisions in the

co-domain (i.e. hashes of different values that are the same) must also be minimized

for the creation of a useful cryptographic hash. The body of work presented in this

thesis examines the randomness properties of cryptographic hashes by monitoring

their effect on random values. In recent years there has been an up tick in the

amount of research that has gone into the development of Cryptographic hashing

algorithms. Likely owing to competitions to name a successor to the SHA-2 family

[15] of hash functions [27]. The existence of cryptographic hash functions has also

been shown to be necessary and sufficient for the existence of pseudo-random number

generators. [19]

A good starting place is to examine the extant random number generators. This

will give us a feeling for the manners in which cryptographic hash functions and ran-

dom number generators differ. It can also illuminate the similarities random number

generators and cryptographic hash functions have. We will then move into the sta-

tistical analysis of randomness properties produced by cryptographic hash functions.

The driving hypothesis behind the work presented in this thesis is the following:

Assuming a cryptographic hash is being used to increase the apparent randomness of

a data set, it is possible to formulate metrics to choose the best hash for this purpose.

1

The conclusion was that the hypothesis holds, and suitable metrics are formulated

and verified.

1.2. Random Number Generators

A Random Number Generator (RNG) is any device or algorithm that allows the

user to consistently generate numbers that are independent from one another. Be-

cause most of the devices we build are deterministic however, we must attempt to

simulate this randomness, and to generate numbers that are seemingly independent

but that are truly related through some complex algorithm that is the constitution

of the RNG. We call Random Number Generators that are inherently deterministic

behind the scenes Pseudo-Random Number Generators (PRNGs).

This definition of a pseudo random number generator extends to all such genera-

tors implemented using software or hardware algorithms on modern computers. There

also exists a group of random number generators that are known as true random num-

ber generators or TRNGs, these are generators that rely on natural processes that

can produce a seemingly non-deterministic set of values. An example of a TRNG is

a device that captures measurements of radiation from americium. The radiation is

captured by a sensor and then some deterministic process is applied to the captured

data in order to return a number. This number is calculated as a function of the

non-deterministic data which implies that it inherently is non-deterministic.

The work discussed in this thesis is relevant to all RNGs, and helps to provide

some context for their improvement in light of the generalized leftover hash lemma.

It is worth noting that we are not attempting to compete with true random number

generators, and that hashing the output of pseudorandom generators is simply a

2

manner in which randomness qualities can be improved. We are then using the

improvement of randomness qualities as a feature on which to classify hash functions,

and potentially to describe classes of hash functions. The work in this thesis serves

as the groundwork of differentiation, and as such analysis of variance and multiple

comparison post-hoc procedures are used to determine whether there are statistically

significant differences in the mean improvement of qualities based on the particular

hash function that is used.

1.2.1. Linear Feedback Shift Register (LFSR)

One such example of a pseudo-random number generator is known as a linear

feedback shift register. Because of their simple and cheap design, these devices are

often used when a hardware PRNG is desired. The manner in which an LFSR works

is simple, it contains a bank of memory elements that is n bits long. Several of the

bits in the device are exclusive ored, and shifted into the leftmost position. This is

why we use the word ‘feedback’ in the name. Every cycle, the contents of the register

are shifted one bit position and the bit that is shifted in is calculated based on the

exclusive or of several of the positions in the memory bank, these positions are known

as the taps of the LFSR.

If the taps are chosen in a very specific way depending on the register length and

a primal polynomial (That is, it cannot be further reduced into constituent poly-

nomials, hence it is primal like a prime number), then the LFSR is considered a

maximal-length LFSR. A maximal-length LFSR is a LFSR that does not repeat any

of its internal values for 2n−1 cycles. Typically when creating a random number gen-

erator there is an understanding that the LFSR will be maximal length. If the LFSR

is not maximal length then it is possible that the internal value contained within

the memory elements of the LFSR will repeat. This repitition causes the stream of

3

numbers produced to appear less random, and indicates that there is a bias towards

the number which occurs more than once.

For an LFSR there is temporal correlation, it is obvious to an observer that the

output of the LFSR is shifted to left once per cycle. To obfuscate the shifting be-

havior when using LFSRs as random number generators, one possibility is to wait for

the LFSR to cycle all previous bits before capturing the next value. The work in this

thesis suggests that there is a different and far less time consuming technique that

can be applied in order to achieve a comparable increase in the apparent randomness

of the LFSR, which involves using cryptographic hash functions as a post-step.

4

1.2.2. Linear Congruential Generators (LCG)

The linear congruential generator is a device first proposed in the 1940’s by

Lehmer. Lehmer defined a method where a stream of random integers could be

calculated using a mathematical formula. The formula takes advantage of modular

arithmetic to form a function whose outputs are periodic, when the input is a seed

applied to the function one time at the beginning. In much the same manner as

Moore and Mealy machines, the LCG, and other random number generators for that

matter, are high-bred contraptions, that use principles from both types of machines

to determine the next output. For instance, there is a single external input at the

beginning of the computation called the seed. The seed is then iterated upon, and

the internal components of the device are updated, producing the next value. In this

way the random number generator is part Mealy machine and part Moore machine.

The LCG uses principles that are discussed in detail in Knuth’s seminal work on the

matter called The Art of Computer Programming: Semi-Numeric Algorithms. [21]

1.2.3. Generalized Feedback Shift Registers (GFSR)

Along the same vein as a linear feedback shift register, the general feedback shift

register is at its core a shift register with taps. The taps are given according to

certain properties that help to provide the longest possible string of pseudorandom

numbers. The taps in a GFSR are not fed back through an addition modulo-two, or

exclusive-or gate, they are instead fed back through other fundamental gates. The

key difference between an LFSR and a GFSR is that the GFSR has gates other than

and in addition to the gates that are contained in the LFSR, and hence can be used

to realize non-linear functions.

1.2.4. True Random versus Pseudo-Random Number Generators

5

Although the topic of the existence of truly random numbers is strongly debated,

that does not prevent their use in modern science and mathematics. If a RNG de-

vice generates a stream of numbers that can be accurately predicted given all prior

information (RNG seed, algorithm) than the device is said to be a pseudo-random

number generator as opposed to a true random number generator. The determinis-

tic nature of computers (on which pseudo-random generators run) implies that the

pseudo-random generators are not truly random.

In practice, most random number generators that are based on natural phe-

nomenon are considered true random number generators. Those devices that are a

pure and simple mechanical process applied to an initial value (a seed) are considered

Pseudo-Random Number Generators (PRNGs).

I mentioned briefly above that we design computers in a manner where they are

very strongly deterministic, that is not to say that all computers are designed this

way, probabilistic and quantum computers are two examples of devices that do not

compute in a deterministic manner. This statement was meant to be indicative of

the modern personal computer. In short for now though, most modern computers

do in-fact consume random numbers at a standard rate due to Operating System

security enhancements.

This discussion would not be complete without a mention and explanation of en-

tropy. Entropy is a concept that originally comes from thermodynamics. Essentially,

in the sciences, the word entropy defines energy that is given off in a reaction in a

form where it cannot be utilized, and hence is lost to the atmosphere. By using ran-

dom numbers we are actually using the random energy floating through the universe

to allow for better security, or simulation results. Entropy is discussed further in a

mathematical sense later, but at its core is a measure of how much information is

contained by a value, or in a list of values.

6

The concept of true randomness has plagued the minds of philosophers for cen-

turies, as is evidenced by the scientific reaction to the theory of determinism presented

in Laplace’s Demon. At the very early turn of the nineteenth century, French mathe-

matician Pierre-Simon Laplace postulated the existence of a theoretical entity in his

work Essai philosophique sur les probabilités. Later known as ‘Laplace’s Demon’, the

postulated entity was one of vast capabilities. No information is beyond this entities

grasp, it knows all information while simultaneously possessing the ability to analyze

them and predict the outcome of any process.

The thought behind this relies on the infallibility of the physical laws of the

universe (known and unknown), as a source of analysis for the entity. The heavily

related philosophy of determinism in the universe has profound and far reaching

implications, in some extreme cases one may even see this as evidence of no free-

will. The notion of determinism underpinning Laplace’s Demon sparked a breadth

of responses from the scientific community, one such response was given in 2008 by

David Wolpert, where he responded with a Cantorian set theory proof that for any

such entity to exist it would inherently contain the universe within.

What it means to be truly random is also a subject of debate, in A Primer on

Pseudorandom Generators, Oded Goldreich presents three of the leading arguments

on what it means for something to truly be random.

The first notion he presents is that of Claude Shannon, which handles frequency

distributions to arrive at a characteristic distribution; the uniform. In the second

theory presented by Goldreich, he invokes concepts from Kolmogorov complexity

theory. In this theory it is said that the complexity of an object can be assigned a

metric in terms of the shortest computer program that can recreate that same object.

Hence, the longer the program needed to recreate the object, the more complex it is.

7

It is due to both of these concepts that many of the tests for randomness exist,

and what allows us to measure random number generators. Goldreich presents a third

argument, which is relative to the observer. In this argument he states that an event

is considered only random if a person does not have sufficient computational abilities

to predict the outcome ahead of time. From this perspective, the roll of a dice may

not be considered random if one could measure its trajectory and predict the outcome

using a powerful computer before it lands. This interpretation is also slightly absurd

in some instances however, as it may suggest for instance that the outcome of the

question ‘What is the derivative of x2?’ is truly random with respect to a person to

whom the question was unanswerable.

The work presented in this thesis makes use of all three definitions of randomness

in a manner to ascertain whether applying a certain procedure to extant generators

is beneficial in producing a seemingly more random stream of numbers.

1.2.5. Cryptographically Secure Pseudo-Random Number Generators

In recent times there has been a shift to using only what are known as Crypto-

graphically Secure Pseudorandom Number Generators (CSPRNGs), which imposes

additional criteria on pseudorandom number generators that causes them to be deemed

secure enough for use in cryptographic applications. There are two primary distinc-

tions for the CSPRNGs are the satisfaction of the following requirements.

1. The random number generator must satisfactorily pass a suite of statistical tests

designed to assess random number generators. This requirement was shown to

be equivalent to the requirement of passing the Yao test in 1982. The Yao test,

also known as the ’next-bit test’, which states simply: To an attacker examin-

ing a pseudorandom number generator for which the first i bits of output are

known, it must be impossible with reasonable computational power to predict

the (i+1)st element.

8

2. In much the same manner as the PRNG must show forward security with the

first point, it must show backwards security in that given any arbitrary sequence

of bits after the first n bits, non of the previous bits can be predicted.

If a pseudorandom generator is to meet both of the above criteria then it is deemed

a cryptographically secure pseudorandom number generator or CSPRNG.

1.3. The definition of Random

Before proceeding into the body of the research that was performed and will be

presented in this thesis, a theoretical discussion of the nature of randomness should

be undertaken to show the philosohpical underpinnings of the work that is presented

herein. Defining the word ‘random’ is a very difficult if not impossible task. If you

consider the essence of what the word stands for one might equate it with synonyms

such as disorder, chaos, entropy, and dissolution. However at the heart of the issue

these words become almost as immaterial as we struggle to helplessly define these

words in the context of what is true in nature and reality.

The Oxford English dictionary defines the word random as “Governed by or in-

volving equal chances for each of the actual or hypothetical members of a population;

produced or obtained by a process of this kind (and therefore completely unpre-

dictable in detail).” The word itself is actually derived from the old French: ‘randon’

which meant great speed. Interestingly the word made its way into middle English

in its current form but meaning ’ an impetuous headlong rush’. Finally in modern

English, the noun takes its familiar meaning as shown above. Although no definition

of the word can truly describe the essence of what it means, there is much to be

gained by looking at where the word came from, the deepest roots of the word are

actually Germanic. In german, the root word Der Rand is an edge, border, or verge.

9

Because of their necessity in a wide variety of different applications (security and

simulation are not the least of which) random number generation techniques have

been refined over a long period of time into their current distilled state. Since time

before written history human beings have had an innate respect for and compli-

cated relationship with random numbers. As evidenced by ancient artifacts used by

shamans, such as bone disks, and Yarrow sticks.

It is interesting that those in the village who were allowed to handle the use of

random numbers in predictions were also some of the most respected. This indicates

that there has been some sort of internal reverence for random numbers instilled in

human beings. This reverence is still latent in modern day applications. For instance,

in many security applications a random number generator is used to create a key.

We use these random numbers to secure our most important information. Another

major modern usage of random numbers is in testing and simulation, we use random

numbers all the time for Monte Carlo simulations, as well as creating truly random

samples.

As we have gained more knowledge as a species we have found many new ways of

exploiting random numbers in scientific pursuits through the field of statistics. We

now know that certain phenomena, both man-made and natural can be shown to

follow certain distributions. This was really a natural step when it came to mak-

ing random observations. After enough time, and with enough observations certain

phenomenon seem to produce results which are oddly predictable. As is seen in

the Figure 1.1 below, with enough observations, the distribution of values attained

becomes more recognizable.

By examining the figure above we note that each subsequent sampling distribu-

tion more closely approximates the next sampling distribution, than the prior did

10

Figure 1.1. Drawing samples Reveals an underlying distribution

it (excluding 10 and 10000 samples). The data in the above plot was taken from

the R-language built in RNG. This and many other modern language generators are

based upon the Mersenne Twister discussed in the last chapter. At this point it is

important to note that one can specify a distribution from which to draw random

data in R. For the above example the data was taken from a normal distribution with

mean 5 and standard deviation 15.

This distribution was completely specified by Carl Gauss. Formally stated, the

frequencies of occurrence for values obtained from normally distributed process with

known mean (µ), and variance (σ2) are given by the following function of said value:

f(x) = 1√
2πσ

e− (x−µ)2

2σ2 (1.1)

Taking the above equation and inserting our known mean of 5, and standard devi-

11

ation of 15 we arrive at the characterizing equation for the frequencies of occurrence

of seemingly random values from Figure 1.1.

f(x) = 1
15
√

2π
e− (x−5)2

450 (1.2)

The function f(x) is known as the probability density function (pdf), and assumes

a measure known as the relative frequency, when supplied with a given value. The

relative frequency (a value between 0 and 1) indicates the probability of occurrence

of the specified value. When enough observations are made that the distribution can

be characterized by an underlying pdf there are many implications, especially in the

realm of security.

Because in distributions like the one above, certain values (discrete) or ranges of

values (continuous) are more likely to occur than others we can become confident

about what the next observation will be. The standard normal pdf is given in Figure

1.2.

So certain random process are not nearly as random as they may at first appear,

in fact we can say with confidence how many times a certain value will appear given

a sample size. If we were constructing a random number generator, we would want

the user to be unable to predict, or in any way be confident about the value that will

be observed. A somewhat natural way to do this would be to allow multiple values to

have the same frequency of occurrence. An example of such a distribution is shown

in Figure 1.3

Another natural extension would be to have three or more values with the same

probability of occurrence. Figure 1.4 is technically a trimodal distribution, however

we note that there is a flattening between the first two modes.

This gives us many values whose frequencies of occurrence are very similar, this is

a desirable property in random number generators. The ultimate conclusion of this

12

Figure 1.2. Standard Normal Distribution for Reference

line of reasoning would be to construct a device which produced a range of numbers

with equal probability. Such a distribution is characterized by an entirely flat pdf, as

shown in Figure 1.5.

The uniform distribution is characterized by two values, the minimum and max-

imum values. With the minimum (a) and maximum (b) values, the distribution is

characterized by the simple pdf:

f(x) = 1
b− a

(1.3)

This concept is a hugely motivating factor behind the design of modern RNGs,

and is also a key component in the design of tests and analysis techniques for random

number generators. In the following section we begin an extensive review of some of

the most, and least successful RNGs, as well as modern techniques. This will help to

13

Figure 1.3. Bimodal Normal Distribution for Reference

set the mood and contrast for the methodology provided in this thesis which aims at

shedding light on a technique that may improve certain RNG test scores.

1.3.1. Lack of Knowledge

In A Primer on Pseudorandom Generators Oded Goldreich discussed three princi-

ple ways that randomness could be defined. In his book Goldreich mentions that the

first theory of randomness has to deal with the quantification of uncertainty. The first

theory presented is attributed to the famous computer scientist and mathematician

Claude E. Shannon. The second theory of randomness has to do with the efficient

representation of information. Some of the key researchers behind this theory were

Solomonoff and Kolmogorov. The last theory presented by Goldreich as the central

theory of his book presents randomness as a concept which is relative to a specific

14

Figure 1.4. Trimodal Normal Distribution for Reference

observers abilities. We discuss each of these three philosophies of randomness in turn,

starting with the first here.

The first definition is attributed to a lack of knowledge about a system. This

definition of randomness is related to the concept of a random variable. Random

variables from statistics are defined as variables that have valuations for which the

chances are distributed according to some function of parameters. For instance, one

of the most famous probability distributions is the Gaussian, or Normal distribution,

its frequency distribution (function attributing chances dependent on the parameters

µ = 0, σ = 1) is shown in Figure 1.6.

The first definition of randomness deals exclusively with distributions in the man-

ner that they appear above. It is important to remember that in this approach the

definition of pure randomness is dependent on a specific distribution. A distribution

15

Figure 1.5. Uniform Distribution for Reference

where the chances of encountering any specific valuation over a given range are equiv-

alent, which is known as the uniform distribution. Hence we consider a value to be

perfectly random when there are equal chances that it will be valuated across a range

of values (This is further discussed in Chapter 2).

1.3.2. Lack of Structure

The second definition is pioneered by Kolmogorov and Solomonoff, and is defined

by a lack of structure. Goldreich notes that an equivalent representation of this no-

tion of randomness has to do with the most tersely and densely packed description of

an object. This concept is related to the notion of compression, as a compressed file

is a representation of the uncompressed file in a less consumptive form. According

to this notion of randomness, the more trite a description is, the less random it is.

16

Figure 1.6. Probability Density Function for Normally Distributed Random Variables

To conceptualize this notion, consider two different random number generators that

are seeded by integers of different lengths. The length of the integer that the first

generator is supplied is 5, whereas that of the second is 9 digits. Because the number

of values with 9 digits is much larger than the number of values with only 5 digits,

we conclude that there is less information conveyed by the nine digit value. The

Kolmogorov Complexity of an object is the length of the shortest possible description

of the object. For instance, we can describe the 9 digit value in a string with length

nine, whereas the five digit value can be described in a string of length five. Hence

we conceede that the Kolmogorov complexity of the nine digit value is higher than

17

that of the five digit value, unless the nine digit value can be encoded or described

in a manner which is shorter in length than the five digit value can be, for instance

consider the value 999999999, we can encode this in English by saying “9 9’s” which

has Kolmogorov complexity equivalent to that of a five digit value. Hence it becomes

totally necessairy to agree upon a specific language before comparing two objects in

terms of their Kolmogorov complexity. Kolmogorov would consider an object to be

random if and only if the length of the program which produces the object is equiva-

lent to that of the object itself.

1.3.3. Lack of Capability

The third and final definition posed by Goldreich in his book deals with a lack of

capability. Lack of capability is somewhat fundamentally different from the other two

approaches that were mentioned. Instead of looking at what we know about an event,

or what we could possibly know about an event, this definition has to do with what

we can precompute about an event, and is posed in the form of a scenario presented

by Goldreich which occurs in four stages, the situation in each stage of the scenario

is the same, Alice flips a coin, Bob predicts a result, and then the outcome of the flip

is observed. If we wished to represent this notion mathematically we may do so as

follows:

let the outcome of Alice’s coin flips be an observable process, with observations

A = {a1, a2, ..., an} corresponding to times TA = {t1, t2, ...tn} (or any other arbitrary

continuous sequencer i.e. tn+1 = tn + δ). If we imagine a situation where Alice is con-

tinuously flipping a coin and observing the result immediately, then consider Bob’s

prediction announcement events B = {b1, b2, ..., bn} such that b1 is Bob’s prediction

of a1 which occurs at some offset of t1 which is defined as ε1. Imagine the time

deltas between observation and prediction are given as ε = {ε1, ε2, ..., εn}. Further-

18

more, imagine that in terms of all possible knowable information about the coin at

a particular instant in time such as the velocity, and orientation of the coin, and the

drag of the environment, there is some fraction of this knowledge which is ‘known’ to

Bob (or at least stored in memory for easy recall). The proportion of the information

which is known to Bob over all knowable information about the system is a continu-

ous (non-differentiable) function of time. The function is non-differentiable because

Bob goes from states of not having knowledge about a variable to having it and vice

versa. Let the amount of knowledge that Bob has about a system be given by the

function κB(A) = ΦB(A)
Φ(A) . In this context the function Φ(A) represents the amount of

information knowable about A in terms of information units i.e. bits. The function

ΦB(A) on the other hand represents the information about A which is also known to

B. What we are left with is a standardized value indicating B’s familiarity with A.

So the function κB(A) gives the value of familiarity Learner B has with process A.

For example consider the following:

Imagine that the accurate determination of a coin-flip could be made with 64 bits

of information. For instance, say 16 bits representing angular momentum, distance

from surface, coin diameter, and orientation each. Now at any one particular moment

you may only observe two attributes, while leaving the others unchanged, with the

exception of a brief period of time when the third attribute is exposed and can be

measured without affecting the fourth. if B knows about A 48
64 = 3

4 of the possible

information about A then it is more likely to succeed in its prediction of event A,

if and only if it can process that information before the next observation of process

A. Now for instance, we would expect that Bob’s prediction of each events outcome

would be correct 50% of the time, otherwise it would follow that Bob could predict

the future (if this value does not tend towards 50% then we say that Bob is using some

additional information available to him about Alice’s coin flips qi = q(ai) to make

19

prediction bi). Furthermore, qi is a percentage of the total possible information that

is knowable about Alice’s coin flips at a given point in time which is known to Bob.

There must then be some (either constant or dynamic) processing rate of B upon the

information known about process A, for simplicity let this value have the variable

α. Even if Bob knows a significant portion of the Data available about process A,

how do we know if it is enough to provide an answer, what is the probability that

the answer provided will be correct, and will it happen before the actual event. The

earliest before the event occurrence would be the most desirable possible outcome.

1.4. Structure

This thesis is organized as follows: in the introduction, the driving hypothesis is

introduced, and conclusion is briefly mentioned. Next a brief introduction to random

number generators is given, as well as a description of several popular methods.

Finally a philosophical approach to the nature of randomness is given, and parallels

between randomness metrics are drawn. In chapter 2 the work that is drawn on in

this body of research are presented and discussed, as well as research that is related

to that in this thesis. In chapter 3 the methodology for producing the initial random

values is discussed (as a side experiment a new extractor is introduced) as well as

the manner in which metrics are taken and analyzed. In chapter 4 the results of the

experiment as well as the statistical testing and analysis is performed on the results.

In the final chapter, the conclusion of the work presented herein is given, as well as

next steps for the continuation of this work.

20

Chapter 2

RELATED WORK

Recall that the there are a plethora of cryptographic hash functions. They are

further subdivided into families of hashes. For example, in the SHA-2 family there are

six variants, which are differentiated by the length of the produced digest (They are

224, 256, 384, 512, 512/224, and 512/256) [15]. We wish to examine the properties of

these functions indirectly by measuring their effects on random values. The manner

in which random numbers are generated and the random number generators are

tested can be applied to values both before and after the values are hashed in order

to determine how well the qualities are improved by a hash function. In order to

determine if there is improvement in the randomness qualities of strings after they

are hashed we must really answer the question ‘What is randomness’. As was discussed

in the preceeding chapter there are many seperate schools of thought on this matter

[12] [24] [31]. One such metric that is inspected is the entropy of a random stream

[31]. Others include the results of the Chi-Square goodness of fit metrics as well as

the serial correlation also introduced by Knuth [21]. In this work, the results are

compared to those for the Hotbits generator which was created at Fourmilabs. [37]

[10] suggests the following guidelines for regular hash functions: that the hash is

easy to compute, and that it is hard (ie. not polynomial time) to find two values with

the same hash. These properties are precisely why hash functions are of interest in

the context of random number generation. Cryptographic hash functions are defined

by Rogaway [29], and others [34] [1]. The properties of cryptographic hash functions

require that the output appears somewhat indistinguishable from random values.

21

The values produced by cryptographic hash functions are generally called ‘hashes’ or

‘digests’ and must satisfy several properties to be considered ‘sufficiently random’. In

1986 Webster provided a definition of the Strict Avalanche Criterion (SAC) [40]. The

criterion is a measure of two fundamental properties for cryptographic hash functions:

confusion and diffusion. The concepts of the confusion and diffusion measure can

be extended to cryptographic hashing functions [9], and were originally proposed by

Claude E. Shannon in his 1949 work ‘Communication Theory of Secrecy Systems’ [32].

The measure of confusion which was originally applied to cryptographic ciphers by

Shannon and references the dependency structure between the key and the cipher text.

The more dependent the cipher text is on the key the better the confusion measure

is. Diffusion is a metric that quantifies the dependency of the cipher text on the plain

text. It contrasts the confusion in this manner, as it does not take into account any

contrast in key and cipher text. The SAC is met if the following statement holds:

for a change as small as one bit in the input to a cryptographic hash function, every

bit in the output has an equal likelihood of either flipping or remaining unchanged.

Very recently (just last year) a statistical procedure for quickly determining whether

a hash function met the SAC was discovered [26]. It is meeting the SAC which causes

the output of a cryptographic hash function to appear very random. Indeed hash

functions are frequently used in the post processing of generated random numbers,

due to their properties for improving the quality of the produced numbers. Sklavos

et. al offered a VLSI implementation of their Pseudo-Random Number Generator

(PRNG) which is based entirely on an initial condition and feedback loop using SHA

[33]. Yu-Hua Wang proposed a new random generator based on random noise in 2005,

which uses a thermal signal as the input to the cryptographic hash function SHA-2

(512) [39]. In Yu-Hua Wang’s work, he provides several statistics on the produced

random values both before using the SHA-2 (512) hash, and after using it. The

22

work done by Yu-Hua Wang closely parallels the work in this thesis, where different

cryptographic hashes are compared by examining differences in randomness metrics

across a plurality of hashes. Chia-Jung Lee examined the extraction of two seperate

entropy sources . In 2007 Bang-Ju Wang proposed a novel random number generator

which used a backwards propogating neural network, and SHA-2 (512 bits) for post

processing [38]. Łoza et. al used the cryptographic hash SHA-256 to post-process

values they produced using uniformly sampled ring oscillators [25]. Herrewege and

Verbauwhede invented a very lightweight PRNG which works by taking advantage of

the Keccak hash [2] [3] in order to both extract entropy as well as to generate the

random values [18]. The list of random number generators which include a hashing

phase goes on and on. It quickly becomes apparent that there is some underlying

value to using these ‘one-way functions’ (hashes), and indeed in the seminal 1985

work by L. A. Levin it was shown that the existence of a ‘one-way function’ such as

a hash was a necessary and sufficient condition for the existence of a pseudo-random

generator defined over the function [23]. Previously it had only been shown that the

existence of a one-way function under several assumptions was a sufficient condition

for producing purely random bit strings [4]. In 1984 Blum further contributed to

the theory of random number generation by describing a cryptographically secure

pseudo random number generator in the following manner: given all prior output

of the random number generator, the probability for an analyzer of any amount of

power to predict the next bit correctly is fifty percent [6]. Another recent development

in random number generation has to do with the extraction from multiple different

sources, and then recombining them [22]. The multiple sources of randomness are

then recombined using the generalized leftover hash lemma originally introduced by

impagliazzo [19]. The leftover hash lemma is of central importance to this work as

it essentially states that any hash function applied to a weak source of randomness

23

will produce values that are random on a uniform distribution. In 1984 M. Blum

also extended a previous contribution by Von Neumann [36] which allows one to turn

a biased coin into a fair one, for any arbitrary number of bits.[5] More recently the

interest in quantum computation has pushed random number theorists to consider

potential vulnerabilities implied by the use of quantum state vectors [35]. The work

contained therein is relevant as a generalized leftover hash lemma is shown to be

robust in a quantum environment.

The comparison of hashing algorithms for use in indexing was completed by R. Jain

in 1992 [20]. That work parallels this in that different hash functions are compared

based on metrics which indicate how well they perform, in this case the metric was

the cardinality of a trace of address references. In 1979, universal classes of hash

functions were considered [7]. Several of these classes lend themselves nicely to the

application of random number generation, and as such were studied in more detail as

generators which require smaller seeds [16]. Chor showed in 1985 that a weak source

of randomness can indeed be used to generate almost uniformly random numbers [8].

In 1986, Goldreich et. al showed how to construct random functions using one-way

functions such as hashes [28]. Recently a similar undertaking by Zhandry in the realm

of quantum random functions has been presented [42]. Goldreich also discussed the

existence of pseudo-random generators using one-way functions such as hashes [13].

In 1982 Yao introduced a logical test, as well as multiple manner of construction for

pseudo-random generators using ‘trap-door functions’ [41]. In 1988 Shamir produced

a text detailing how to produce cryptographically secure random number generators

[30].

A treatment of the majority of the random generators that are frequently used

was given by Donald Knuth, in his second volume on the Art of Programming entitled

‘Semi-Numeric Algorithms’ [21]. Very recently a genetic algorithm was used to evolve

24

random values using fitness criteria reported by the ENT linux utility [17].

The body of work on cryptographic hash functions and their relationship to

pseudo-random number generators was discussed in detail in this chapter, and the

results of several of the papers discussed herein were vastly motivating factors for the

use of randomness metrics to characterize cryptographic hash functions. Previous

research has not examined the 14 cryptographic hash functions which are analyzed in

this thesis, and has not used randomness metrics to make determinations on which

hash should be used. In this thesis these metrics are determined and verified.

25

Chapter 3

METHODOLOGY

In this research, the methodology consists simply of applying statistical analysis to

the randomness metrics of the same values after they have been hashed using different

cryptographic hash functions. The use of parametric and nonparametric methods for

group location tests such as the Welch, Brown-Forsythe, and Kruskal-Wallis rank

sum test were applied. As well as Dunn’s test for a post-hoc multiple comparison

procedure. For testing the assumptions of the ANOVA, the Shapiro-Wilks test of

normality was applied, and Levene’s test for homoscedasticity was used.

As a side experiment a new entropy extractor based on the inter-packet delays

on a network was introduced. The extractor was used to produce values which were

then experimented on by applying the hash functions and monitoring the changes in

randomness metrics such as entropy, serial correlation, and the chi-squared uniformity

test results.

3.1. ENTROPY

3.1.1. Derivation

Entropy is defined by the amount of disorder in a given system. The definition

extends to bitstrings in the capacity It is defined mathematically by the following

formula:

H(X) = E[I(X)] = E[−ln(P (x))] (3.1)

26

The formula is not that intuitive at first, but it can be derived in an intuitive

fashion. We will first discuss the self information of an event. The self-information of

an event is the amount of information that is construed by the event having occured.

It stands to reason that events which occur with a low frequency can tell you more

about a particular system. For instance, if a fair six-sided die was rolled 100 times, we

would expect each of the 6 sides to be face up with roughly equal proportions. Thus,

rolling a one with the dice contains no more information than rolling a six would.

However, if we imagine a six-sided dice that is not fair, and causes six to be face

up 50% more frequently than one, then we gain more information about the die by

observing a one, than observing a six. Because an event having occured conveys

some information about itself, an event that occurs less frequently inherently conveys

more information about itself than an event which occurs frequently. With this initial

hurdle in mind, we can begin deriving the mathematics of the self-information of an

event. Let us first attempt to define the self information of an event as follows:

I(A) = 1
P (A) (3.2)

We define the information of event A as the inverse of the probability that A

occured. At first glance this seems to be a good measure of the self information, as

it increases proportionally with the probability that an event occurs, the smaller the

probability of the event occuring, the larger the self information. However this defini-

tion does not satisfy one crucial requirement for self information. Plainly stated, the

self information of two events intersection should be equivalent to the self information

of the first event cummulated with the self information of the second event. In other

words we want the following to hold:

27

I(A ∩B) = I(A) + I(B) (3.3)

We know from probability theory that the intersection of two probabilities is

expressed as below:

P (A ∩B) = P (A) · P (B) (3.4)

Therefore, using the measure of self information that we initially suggested we

would arrive at the following predicament:

I(A ∩B) = 1
P (A) · P (B) 6= I(A) + I(B) = P (A) + P (B)

P (A) · P (B) (3.5)

As our original definition of the self information of A does not satisfy this equation,

we are forced to concieve of another function that will indeed satisfy this property of

additive self information.

I(A) = ln(1
P (A)) = −ln(P (A)) (3.6)

This definition of the self-information of a given event beautifully satisfies the

additive self-information property that was neglected in our first definition with the

same properties of being large when the probability is small, and vice-versa.

I(A ∩B) = −ln(P (A) · P (B)) = I(A) + I(B) = −[ln(P (A)) + ln(P (B))] (3.7)

Ergo, we can define the self-information of an event as is given in 1.13. This isn’t

the end of the story however, as we have simply defined the self information of an

event, not the entropy. The entropy of an event is a value that is very closely related

to the self information of the event occuring, but is not defined exactly the same

way. Note that because the self-information is defined based on a probability density

28

function it itself is indeed a random variable. Therefore we can take the expected

value of the information of A, just as we can the random variable A itself. We call

the expected value of the self-information of an event, the entropy of that event.

H(A) = E(I(A)) (3.8)

3.1.2. Extraction

Sources of entropy are frequently gathered by modern random number genera-

tors. As was stated in the introduction the Linux random number generator extracts

entropy from interrupts, disk accesses, keyboard input, and more.

One obvious metric to examine when attempting to extract entropy timing. For

instance, when extracting entropy from the keyboard, one possible method for doing

so is the careful examination of the wait times between key presses. The slight varia-

tions in key presses may not be a truly random data source (I.e. the distribution may

not be uniform), but there are many methods for transforming known distributions

into uniform ones, one such method is the first of, what we claim, are three ways to

extract entropy from a random stream.

3.1.2.1. A Posteriori Coin-Flip

The principle behind this method of entropy extraction relies on a known data set

size. After the data is collected, the median value of the distribution is calculated.

Since by definition the median is a measure of center, calculated as the middle element

of the data set, exactly one half of the retrieved values will be above the median and

the other will be below. Obviously, this extends to the use of other measures of

center, and even potentially trend models such as a Linear regression, ARMA and

other forecasting techniques.

29

The A Posteriori Coin-Flip occurs after your entire data set has been collected

and a valid trend seeking line (whether flat as with the mean or median, or sloped),

begin at the first data point (this is the first coin-flip) if it lies above the calculated

measure of center (MOC) record one, or heads as the result of the first coin-flip.

Continue until all data points have been assigned a bit. This bitstring is an example

of extracting entropy from a system if you are given knowledge about the data system

ahead of time. Mathematically this notion can be expressed in the following way.

Definition 1 A Posteriori Coin-Flip

Given X such that X = {x1, x2, x3, ..., xn}

Q2 = {x|P (X > x) = P (X < x) = 0.5}

Rψ(xi) = ri =

1 xi > Q2

0 xi < Q2

Hence, the entropy is extracted into the binary value: r1r2r3r4...rn

In this definition we are using the median as the MOC (represented by Q2),

however this can easily be replaced with any other MOC. As with any method there

is a short pros and cons list for using the A Posteriori Coin-Flip. One obvious con

of the definition in the manner we present it with a static MOC, as opposed to a

dynamic MOC such as a time series ARMA model, there will tend to be an obvious

correlation between values close together. Of course, the better the entropy source,

the higher quality the extracted entropy will be. A Pro of using this method is that

we can force a uniform distribution on the output string. A further benefit of using

this method is that the MOC must only be calculated one time (after all of the data

is collected)

30

A mathematical proof that this method (using the median) will extract the max-

imum theoretical entropy is given here:

Proof A Posteriori Coin-Flip maximizes Shannon Entropy

Given a supposedly random sample

X = {x1 ∈ R, x2 ∈ R, x3 ∈ R, ..., xn ∈ R}

We define the random variable α in terms of the median (or second quartile) of X

α : R→ B

P (α = 0) = p0(α) = |{x|x < Q2(X)}|
|X|

= 1
2

P (α = 1) = p1(α) = |{x|x > Q2(X)}|
|X|

= 1
2

The formula for the entropy of a string of Bernoulli trials (or a ‘bitstring’) is given:

H(p0(b), p1(b)) = −(p0(b)log2(p0(b)) + p1(b)log2(p1(b)))

We can maximize the Entropy function as so:

∇H(p0, p1) =
(
∂H

∂p0
,
∂H

∂p1

)
=
(
− ln(p0) + 1

ln(2) ,− ln(p1) + 1
ln(2)

)
Maximizing we find

−ln(p0)− 1
ln(2) = 0=⇒ln(p0) = −1=⇒p0 = 1

e

−ln(p1)− 1
ln(2) = 0=⇒ln(p1) = −1=⇒p1 = 1

e

This seemingly odd result is because there is an inherent dependence among these two

values, expressed mathematically as p0 + p1 = 1, in our first maximization attempt,

we neglected to account for the hard-restraint p0 +p1 = 1 In constraining the original

optimization we have the following system:

−ln(p1)− 1
ln(2) = 0 = −ln(p0)− 1

ln(2)

31

p1 = 1− p0

−ln(1− p0)− 1
ln(2) = −ln(p0)− 1

ln(2) =⇒1− p0 = p0

=⇒p0 = 0.5=⇒p1 = 1− 0.5 = 0.5

Because p0(α) = p1(α) = 0.5 by definition, we have maximized the entropy function

for the constraint p1 + p0 = 1.

3.1.2.2. Extemporaneous Coin-Flip

As the name implies, the extemporaneous coin-flip occurs simultaneously as new

data is available. The general procedure is very similar to that of the A Posteriori

coin-flip, however in this method the measure of center is recomputed with every new

sample that becomes available. In this method we start with an initial guess as to

the measure of center (This could be a MOC from a previous entropy capture, or

an educated guess, or simply the first value observed). As a side note, in both this

and the A Priori Coin-Flip method, the first random bit retrieved can and should be

thrown away in certain circumstances.

As with the previous method, each time new data becomes available it is compared

to the MOC and a bit is generated depending on whether the point lies above or below.

Unlike the previous example, the MOC changes with every new data point available.

in the following definition the chosen MOC is again the median, however again this

can easily be replaced with whichever statistic is desired.

Definition 2 Extemporaneous Coin-Flip

Given a series of sets X = {X1, X2, X3, ..., Xn}

Such that X1 ⊂ X2 ⊂ X3 ⊂ ... ⊂ Xn

{∀i ∈ N|0 < i ≤ n}=⇒|Xi|+ 1 = |Xi−1|

32

Given an initial guess g0 to serve as the MOC (before the first data point is collected)

We can express our updating median as a function of data sets in the following

manner.

Q2(Xi) = {x|P (Xi > x) = P (Xi < x) = 0.5}

Rφ(xi) = ri =

1 xi > Q2(Xi)

0 xi < Q2(Xi)

As with the previous definition the entropy generated can be utilized by the bit-

stream given by:

r1r2r3r4...rn

As with the A Posteriori method, there are some benefits, and draw backs to

using this method for entropy extraction. In this method the measure of center must

be recomputed with each subsequent data point gathered, this could waste valuable

CPU cycles. The primary benefit of using this method is that after the new MOC

is calculated, the old can be discarded, as well as the immediate discarding of all

previous data, as it is analyzed simultaneously as it is gathered. This method is also

easy to implement on systems where you would like to be constantly analyzing data

(such as massive server banks connected to Muller-Geiger tubes and old fire detector

parts).

3.1.2.3. A Priori Coin-Flip

The last of what we claim are three entropy extraction methodologies presented in

this work we again require some guess or ‘A priori’ knowledge in order to effectively

use the first bit as a truly random coin flip. This method is performed in exactly the

same manner as the previous, with one key difference. In this method, the MOC that

33

is used must determine the outcome of the coin-flip before it is updated with the new

information. The new value must be used to update the MOC after the previous coin-

flip, both the previous data value and previous MOC can be immediately discarded

after the new MOC is generated. As it is essentially the same method as above

simply time-lagged by one observation the definition is very similar with the difference

highlighted below

Definition 3 A Priori Coin-Flip

Given a series of sets X = {X1, X2, X3, ..., Xn}

Such that X1 ⊂ X2 ⊂ X3 ⊂ ... ⊂ Xn

{∀i ∈ N|0 ≤ i ≤ n}=⇒|Xi|+ 1 = |Xi−1|

Given an initial guess g0 to serve as the MOC (before the first data point is collected)

We can express our updating median as a function of data sets in the following

manner.

Q2(Xi) =

{x|P (Xi > x) = P (Xi < x) = 0.5} i 6= 1

g0 i = 0

Rπ(xi) = ri =

1 xi > Q2(Xi−1)

0 xi < Q2(Xi−1)

The entropy is in the bit string:

r1r2r3r4...rn

Corollary 3.1.1 This method can easily be extended ad inf. by using MOC’s from

more than one observation in the past, then updating with a lag value greater than

one.

34

Corollary 3.1.2 When using certain methods for the MOC, such as forecasting mod-

els for time series, prior data must be kept for the recalculation of the MOC, however,

a sliding window could also be used in this case to save memory.

Many of the pros and cons for using this method correspond with what was said about

the Extemporaneous Coin-Flip. In this method, unlike the last, the new MOC does

not need to be calculated before the result of the next coin-flip can be determined.

This is a great method to use when events are rare, and there is a long wait time

before the next observation. When using this method in the given scenario, the wait

time can be used as compute time for the updated MOC.

It is essential to note that in all of the above methods the entropy extracted

from the random stream should not be used directly (I.e. do not directly use the

bit strings calculated as your random values), they should instead be used as inputs

to pseudo-random number generators, conglomerated with multiple other sources of

entropy with a mixing function, or as we will further explore in this work use pseudo-

random functions such as cryptographic primitives like hash functions and HMACs

(potentially even using the random value a key in a keyed HMAC). One could even

potentially use a good compression algorithm to produce a valuable random number.

3.2. RANDOM SOURCE: NETWORKIn this section we attempt to extract entropy from an real-life random stream,

that almost any modern computer has access to. We propose the extraction of entropy

from simple packet capture data. This notion extends much further than the manner

in which it is presented here, and can be applied to far more sophisticated broadcast

data (I.e. low band AM, Snow on television). In this case, we take a very clearly

deliberate and logical approach to extracting entropy.

We briefly mentioned in the last section that a straightforward approach to ex-

35

tracting entropy from a random stream is to investigate the timings of the events.

In this specific application we examine the timing data for packets using a standard

packet capture tool (Wireshark). Once a given packet capture was completed we

computed the retrieved entropy bit strings using the A Posteriori method described

in the previous section.

With our packet capture results, timing data was given in terms of seconds (with

5 digits of significance). As each time was initially reported in the elapsed time since

the beginning of the capture, we first needed to subtract each next arrival time from

the prior arrival time. In this manner each of the packets received would be assigned

a time delta, (or in other words, the time stamp of the packet received after the

current packet minus the current packet’s time stamp. We can formally define this

in the following manner.

Definition 4 Extracting Entropy from Packet Timing Data

let ti represent the ith time stamp given in seconds, since the beginning of the packet

capture.

δi = ti+1 − ti

Note that this necessarily excludes the generation of the terminal δi (because ti+1

has not been observed yet). Suppose that in a given packet capture, n packets are

captured, then

∆ = {δ1, δ2, .., δn−1}

We can then define a probability space over the set ∆

P (∆ < x) = |{δi ∈ ∆|δi < x}|
|∆|

Q2 = {δ|P (∆ < δ) = P (∆ > δ) = 0.5}

36

We then simply perform the A Posteriori Coin-Flip discussed in the previous section

Rψ(δi) = ri =

1 δi > Q2

0 δi < Q2

37

Chapter 4

RESULTS

Recall that a new extractor was introduced which worked by examining the inter-

packet delays on a network. First the results of this side experiment are shown,

followed by the measurement of randomness qualities before and after being hashed

by a series of 14 of the most popular cryptographic hashes. These measurements

are then analyzed, and finally claims and conclusions are drawn based around the

analysis of the metrics.

4.1. Packet CapturesPacket captures of sizes ranging from 5000-50000 packets were run at three dif-

ferent times, and over multiple networks on three different operating systems (Mac

OSX, Windows 10, Ubuntu Linux 16.10).

A very quick inspection of the plots reveals that there is temporal correlation in

the data at this point, however, we are not worried about the quality of the random

numbers produced at this stage in their creation. As was stated in Section III, we are

not going to simply use the produced value, we are more likely to use the gathered

entropy to seed a deterministic pseudorandom generator.

We leave it to future work to perform more sophisticated trend modeling, in this

analysis we will simply be using the median to decide the outcome of the A Posteriori

Coin-Flip. The medians were calculated and nine different entropic bit strings were

collected.

As we are merely concerned with having values which are able to be improved

through the application of a cryptographic hash function we are not really interested

38

Figure 4.1. Windows Packet Capture Inter Packet Delays

in the resulting characteristics of these produced random strings being very good.

The use of inter-network packet delays as a weak source of randomness should be

considered in this context as a side experiment. The primary utility of the provided

values simply has to do with the amount by which they can be improved when utilizing

different Cryptographic hash functions. In this work we investigate several different

families of hash functions, and several different randomness metrics, to determine

what properties are improved by which hash functions.

Note that we will be using nine values, which correspond to the nine packet cap-

tures that were performed. As the captures were on different networks, and different

operating systems, it is fairly safe to say that the sources are independent of one an-

other. As shown in the Appendix, the ENT utility was run on each of the nine strings,

and the measures (such as entropy and serial correlation) are reported. The values

39

Figure 4.2. Mac OSX Packet Capture Inter Packet Delays

are then broken up into chunks of the same size as the output of the corresponding

hash function, and each chunk is hashed individually then concatenated. The ENT

utility is then also used on the hashed values, and the quality measures are recorded.

Taking the difference in the quality metrics before and after hashing for each of

the nine values (for each hash) allows a quantification of the improvement of the

random value dependent on hash. All the parameter deltas are grouped by hash,

and the variance is Analyzed to determine if there is any mean pair of differences

that are statistically lower or higher than each other. Then the post-hoc multiple

comparison procedure involving Dunn Confidence intervals was performed, giving

statistical evidence that certain classes of Cryptographic hash functions tend to have

better metric improvement. For a complete listing of the metrics and data that were

produced for each of the nine strings, consult the appendix. Before performing an

40

Figure 4.3. Linux Packet Capture Inter Packet Delays

analysis of variance on the data, we should inspect it visually in the form of box

plots. The first box plot represents one of the first metrics that we are examining,

the entropy. The entropy is considered over ensembles of 8 bit strings, indicating

that there are 28 = 256 symbols in the alphabet. Figure 4.4 shows the entropy

distributions of each of the 14 hash functions that are being compared. Recall that

there are nine different strings per hash, giving a total of 126 total strings that are

being analyzed. As is becoming readily apparent from the plot, there appears to be

vaster improvement of Entropy in the case of the shake hash function. This is an

important intermediate result as it indicates that an ANOVA may be necessary to

determine if there is any statistical difference in the means of the entropies produced

by different hashes.

41

Figure 4.4. Entropy in bits/byte for hashed strings (n = 9 per hash)

Similarly by inspecting Figure 4.5 we notice that there appears to be major differ-

ences among the means of the different groups. This indicates that it would be good

to perform an ANOVA as well as a post hoc procedure in order to see which pairs

of mean differences are significant. In order to perform an ANOVA there are several

statistical assumptions that must first be addressed.

• The data are normally distributed (tested with the Shapiro Test/ qq plots)

• The data are homoscedastic (have equal variances, levene’s test)

• The data are independent within subgroups (This is assumed)

One final boxplot to inspect is that which relates to the Chi-Square test statistic

for the data. The test statistic should fall on the middle of the interval for truly

random data, which in this case is 256. Figure 4.6 shows yet again that there are

potentially statistically significant differences among the different hash functions.

42

Figure 4.5. Serial Correlation for hashed strings (n = 9 per hash)

We must first address the assumptions for each of the variables we wish to examine.

We will examine the entropy statistic first, Figure 4.7 shows the qq-plot of Entropies

across subgroups. As is fairly apparent from the figure, the data do not seem to

follow a normal distribution. We can formally verify this notion by using the shapiro

test. The null hypothesis of the Shapiro test is that the data come from a normally

distributed population.

Table 4.1 indicates the results of the Shapiro-Wilks test for normality.

Table 4.1. Shapiro-Wilks Test for Normality of Entropies

W 0.81796
p-val 3.418e-11**

Note that we must reject the null hypothesis of normality in this case in favor of

the alternative that the data do not come from a normal distribution. This means that

43

Figure 4.6. Chi-Squared for hashed strings (n = 9 per hash)

we cannot perform a regular One-Way ANOVA on the data (well we can technically,

because ANOVA is robust to the normality assumption, with only a slight drawback

on the type I error rate.) We will use the Kruskal-Wallis H test instead 4.2, as it does

not require the working assumption that the data come from a normal distribution.

Table 4.2. Kruskal-Wallis Test for equivalent population Entropies

χ2 38.57
p-val 0.0002341**

Note that the p-value is below our significance level of 0.05 which indicates that

we should reject the null hypothesis of the Kruskal-Wallis H test which is that the

Entropies among the different groups come from populations which are distributed

differently. I used the Dunn multiple comparison procedure in this package [11]. The

44

Figure 4.7. qq-plot of Entropy

results of the post-hoc procedure are shown in the appendix.

We will now investigate the serial correlation improvement of these hashes by a

similar analysis. Let us first determine what the proper variance comparison technique

is. The qq plot in Figure 4.8 shows that the data appears normally distributed, the

Shapiro Wilk test results indicates that the data is sufficiently normal, and hence we

must use Levene’s test to determine if the data are homoscedastistic. The results of

Levene’s test and the Shapiro-Wilk test are given in Tables 4.3 and 4.4

Table 4.3. Shapiro-Wilks Test for Normality of Serial Correlations

W 0.98486
p-val 0.1741

45

Figure 4.8. qq-plot of Serial Correlation

As the result of levene’s test is not significant enough to reject the null hypothesis

that the groups are homoscedastic we are able to apply a proper ANOVA to the serial

correlations.

The results of the variance analysis as well as appropriate post-hoc procedures are

provided in the appropriate appendices.

4.2. ANALYSISIn our analysis we will simply be using the Linux utility ENT, created at Fourmi-

labs, which reports several statistics on the entropy contained, temporal correlations,

even quality of randomness (Monte Carlo simulation of Pi). In the following para-

graphs we will briefly examine and discuss the use of each of the statistics that are

calculated using ENT, as well as presenting a table of the results for the entropic

strings that were generated using the A Posteriori Coin-Flip method on our nine

46

Table 4.4. Levene’s test for homoscedasticity of serial correlation

F 1.4785
p-val .1364

packet capture timing Data vectors.

The first metric reported by ENT is its name-sake: entropy. For all intents and

purposes we can think of this measure as a rough estimate as to how much information

is actually contained within a bitstring. The metric of entropy was defined by Claude

Shannon in his seminal work A Mathematical Theory of Communication. The formula

he gives for approximating the entropy of a bit string is defined as:

Definition Shannon Entropy (as applied to bitstrings)

The Shannon Entropy of a bitstring is quantified in terms of the information inher-

ently contained by the string. The derivation of this formula is given in Chapter 3.

Shannon entropy is defined as:

H(X) = −
n∑
i=1

pilog2(pi)

In a bitstring, there are two possible outcomes, either a one or a zero. Hence there

are only two probabilities to deal with, p0 = P (X = 0) and p1 = P (X = 1) for random

variable X, which is distributed according to the relative frequency distribution for

bits contained within the random string X = x1x2x3..xn. In this way, the entropy is

calculated in a very similar manner to that of the way which it is extracted in the

A Posteriori Coin-Flip, where we must have retrieved all information before we can

provide an accurate estimate. Once we have collected all of the data, and calculated

{p0, p1} we can calculate the entropy of the bit string directly as:

47

H(X) = −[p1log2(p1) + p0log2(p0)]

The entropy is reported in terms of a measurement of the amount of ‘bits’ of

information contained in a specific character, in the case of a random bit string it

reports the ‘bits’ per bit. Hence in the ideal case we would see entropy approaching

1.0 (or subsequently, the number of bits used to encode the symbol)

The second statistic reported on by ENT is the optimum compression ratio. Note

that, this is calculated directly from the entropy estimate. We also would like to note

that because of this, it may not take more useful and modern compression techniques

into account and is simply a theoretical value. The statistic is reported in relation to

compression on bytes, as well as the compression for the value as a bit string. Again,

thanks to Claude Shannon, a theoretical maximum value for the optimum compression

ratio was quantized in terms of the entropy of the string to be compressed.

Definition Shannon’s Source Coding Theorem

This theorem simply states that the length of the optimally compressed string is

directly related to the entropy contained over the entire string, Note that this is not

the ratio of entropy per symbol as it is reported by ent, it is technically equivalent to

the entropy ratio reported by ent multiplied by the length of the string in symbols.

Mathematically the bound on the minimum length of a compressed string is given as:

Lc < H(X) + 1
N

Where Lc is the minimum length of the compressed string X of length N . The

Compression ratio then simply becomes:

C = Lu − Lc
Lu

48

Where Lu and Lc are the uncompressed and compressed string lengths. Ideally, the

entropy ratio is close to one bit per bit, and therefore there the difference Lu − Lc

will approach zero, causing the compression ratio to become zero. The theoretical

nature of this calculation does not apply to different compression methods, such as

run-length encoding.

The next statistical result reported on by ent are the results of a chi-squared(χ2)

test for randomness. The χ2-test was first proposed by Karl Pearson, an extremely

prolific statistician out of London England. As with any statistical hypothesis test

this test is formulated by examining collected data through the use of a determin-

istic function of said data known as a statistic. The statistic, or test-statistic, is

then compared to a critical point on the Known Distribution of test-statistics to

ascertain whether or not a specific hypothesis should be rejected. In this way, it is

similar to the Coin-Flip methods described above, however the MOC would corre-

spond to the critical-value on the distribution of test-statistics. The key contribution

of Pearson to this particular test was his proof that a test statistic (deterministic

function of the data) would be distributed (in the theoretical case) according to a

parameterized distribution known as the χ2 distribution (so named as the square of

the sum of normally distributed random variables follows this distribution). The χ2

distribution is a parameterized distribution, meaning that the deterministic function

providing its probability density function (PDF) is dependent on a value supplied in

the instantiation of the distribution. The required value for the χ2 distribution is

given the symbol κ and known as the “degrees of freedom”. Degrees of freedom are

so called, because when special conditions are met, they can be calculated indirectly

as a function of how much data was collected, however it should be noted that this

is simply an estimate, as was proven in Kendall’s Advanced theory of Statistics.

In the case of the χ2 test, it was shown that the sum of the squared differences

49

in frequencies between that of an observed distribution, and that of a theoretical dis-

tribution divided by the theoretical distribution, for each discretized observation bin

will follow a χ2 distribution with degrees of freedom calculated by use of the number

of observation bins n, and the number of co-variates used to specify the theoretical

distribution p. Again due to Shannon, it was speculated that if data were to be

truly random, it would be pulled from a Uniform distribution, with two parameters

(a which is the first observation,b which is the last observation). Therefore, to use

the proposed test for randomness, the theoretical distribution that will be used is

the uniform distribution. Hence a χ2 test for randomness can be mathematically

formulated in the following way:

Definition Chi-Square test for Randomness

Given a set of discrete observations X = x1, x2, x3, ..., xn, we wish to show:

(X : X → X) ∼ U [x1, xn]

The random variable X defined as a mapping of data points to themselves in the

measure space is distributed sufficiently close to, or far away from the given uniform

distribution.

H0 : X ∼ U [x1, xn]

H1 : X ∼ Λ

Where Λ is an unknown distribution. A significance level α, denoting the point of

the critical value (I.e. which determines how similar the frequencies must be to not

reject the null hypothesis) is chosen. A standard value is α = 0.05. Calculating

the test statistic, and determining the critical point on the appropriate χ2 distribution

as shown here:

50

cp = {x|P (χ2(κ) < x) = α = 0.05}

χ2 =
n∑
i=1

(Oi − Ti)2

Ti

κ = n− (p+ 1)

Note that the definition of how many bins exist depends strongly on the manner

in which a random string is analyzed. In ent, for instance, when running in byte

mode, there are 28 = 256 bins, whereas when analyzing in bit mode, there are only

two bins, one and zero.

Remark The ent results also report the tail probability (‘it will exceed this value less

than X percent of the time’). This value is also known as the p-value, if the p-value

is greater than our significance level α then we fail to reject the possibility that the

data does indeed come from a random distribution.

Fourmilabs, the creator of ent, suggests the following interpretations for χ2 test

results.

Table 4.5. χ2 p-value interpretations

p-value Interpretation
p-val > 99% Almost certainly not random.

99% < p-val > 95% The sequence is suspect.
95% < p-val > 90% The sequence is almost suspect.
90% < p-val > 10% The sequence is good.
10% < p-val > 5% The sequence is almost suspect.
5% < p-val > 1% The sequence is suspect.

p-val < 1% Almost certainly not random.

The next parameter reported by ent is the arithmetic mean of the data, depending

on whether you specify byte or bit mode in ent, this will produce an average of the

51

binary numbers encoded in a single byte (0-255) or, simply the bits present in the file.

It is calculated simply by summing every value, and dividing by the number of values

present. We could further use the calculated mean as a test-statistic in a student’s

t-test, however it is sufficient to simply compare to the ideal means 0.5, and 127.5 for

bits and bytes respectively.

The ENT measures several other characteristics of the data that is provided,

but the two most important metrics in this research are the entropy and the serial

correlation, as the chi-squared test results were shown to not have any statistically

significant difference among the grouped values.

52

Chapter 5

CONCLUSION

As was stated at the beginning of this thesis, the guiding hypothesis for the work

presented herein is given as: Assuming a cryptographic hash is being used to increase

the apparant randomness of a data set, It is possible to formulate metrics to choose

the best hash for this purpose. This body of work found suitable metrics in the form

of the Entropy and Serial Correlation of effected values. The conclusion of this work

is that the hypothesis holds, and suitable metrics were formulated and verified.

5.1. Future Work

The primary contribution of this work was the ability to differentiate which hashes

are able to provide a boost to the desired aspects of random numbers. In the body

of this work 14 of the common cryptographic hash functions are compared using sta-

tistical procedures that show greater improvement of entropy, serial correlation, and

chi-squared test statistic. The logical next step would be to show that these property

improving qualities of hash functions hold across multiple different ‘generators’. For

instance, perhaps drawing strings from the linux /dev/random utility and hashing

them, as well as pulling multiple strings from true random generators to ensure that

the improvement qualities of the hash functions extend across other sources as well.

Another direction to take this work is monitoring the property changes when

multiple different hashes are chained together. This would allow us to determine if

chaining multiple hashes together will provide any discernible advantage over using

a single hash, or perhaps simply iterating through the same hash multiple times.

53

During the body of this work it became quickly apparent that there are a signifi-

cant number of similarities between cryptographic hash functions and pseudo-random

number generators. For instance, one could produce a pseudo-random number gener-

ator from any one-way function by continually iterating the hash ouput back through

the original hash. [14]. Further work in the realm might seek to examine the ap-

plicability of different hash functions are random number generators by using the

test suites for random generators (I.E. NIST STS and Diehard). Or on the other

hand, might seek to use extant pseudo-random number generators as cryptographic

hash functions with variable output length which is a multiple of the input length.

The properties of diffusion and confusion as well as the strict avalanche criterion

could be shown to be met for pseudo-random number generators which behave as

cryptographic hash functions (i.e. producing the ‘hash’ of the seed).

Another potential next step would be to use a genetic algorithm to evolve crypto-

graphic hash functions using fitness criteria that are based on the apparent random-

ness metrics such as entropy and serial correlation. The result of that work would

be the ability to construct cryptographic hash functions with the desired ability to

increase the randomness metrics of supplied values. This would allow one to construct

algorithms to quickly come up with new families of cryptographic hash functions.

54

Appendix A

Hashed Network Data

Table A.1. Pure Entropic String ENT results

Entropy Arithmetic Mean Serial Correlation Compression

bits/byte bits/bit by byte by bit by byte by bit size (b) comp. size (b) ratio (%)

Windows 10
Capture 1 6.666783 0.999995 126.5384 0.4986 -0.104782 0.207267 2200 2200 0
Capture 2 7.196086 1.000000 125.5073 0.4998 0.083004 0.209302 5504 5504 0
Capture 3 7.362089 1.000000 126.5384 0.4997 0.374569 0.232915 11472 11472 0

Mac OS X 12.10
Capture 1 7.198828 1.000000 125.7977 0.5000 0.326609 0.070809 5536 5536 0
Capture 2 7.229747 1.000000 126.3883 0.5000 0.249999 0.119658 6552 6552 0
Capture 3 3.843544 0.980664 71.4336 0.4183 0.397400 0.018324 11680 11563 1

Ubuntu Linux 16.10
Capture 1 7.229747 1.000000 126.3883 0.5000 0.249999 0.119658 6552 6552 0
Capture 2 6.973394 0.999999 127.8026 0.4993 0.313810 0.307581 5592 5592 0
Capture 3 5.304753 1.000000 128.1367 0.5001 -0.003104 0.682508 50080 50080 0
Averages

Linux 6.503 1.0 127.4 0.4998 0.188971 0.3699 - - 0
Mac 6.091 0.9936 107.87 0.4728 0.3247 0.06960 - - 0.3333
PC 7.075 1.0 126.2 0.4994 0.11760 0.2165 - - 0

Reference
Hotbits 7.916369 0.999995 128.7873 0.4987 0.031555 0.000973 16320 16320 0
Ideal 8.0 1.0 127.5 0.5 0.0 0.0 - - 0

Cross Platform Average 6.5563 0.997867 120.49 0.49067 0.21042367 0.21867 - - 1

55

Table of Hashed Packet Data ENT results (by bits)

Operating.System Hash Size Entropy Chi.Sq. Mean MC.Pi Serial.Correlation

1 Linux bl2b 6656 0.999993 0.060096 0.498498 3.217391 -0.013230

2 Linux bl2b 5632 0.999960 0.313210 0.503729 3.247863 -0.004317

3 Linux bl2b 50176 0.999996 0.277503 0.498824 3.058373 0.004060

4 Windows bl2b 2560 0.999901 0.351562 0.505859 3.396226 0.018615

5 Windows bl2b 5632 0.999923 0.597301 0.505149 2.974359 0.008418

6 Windows bl2b 11776 0.999970 0.490489 0.496773 3.134694 0.000638

7 Mac bl2b 5632 0.999997 0.025568 0.498935 3.111111 -0.004266

8 Mac bl2b 6656 0.999993 0.060096 0.498498 3.217391 -0.013230

9 Mac bl2b 11776 0.999928 1.182405 0.494990 3.118367 -0.002139

10 Linux bl2s 6656 0.999933 0.615385 0.504808 3.304348 0.023347

11 Linux bl2s 5632 0.999974 0.205256 0.496982 3.145299 -0.008559

12 Linux bl2s 50176 1.000000 0.006457 0.499821 3.196172 -0.000160

13 Windows bl2s 2304 0.999783 0.694444 0.508681 3.000000 -0.022878

14 Windows bl2s 5632 0.999977 0.181818 0.497159 3.145299 -0.003584

15 Windows bl2s 11520 0.999996 0.068056 0.501215 3.116667 -0.016325

16 Mac bl2s 5632 0.999956 0.343750 0.496094 3.179487 -0.011425

17 Mac bl2s 6656 0.999933 0.615385 0.504808 3.304348 0.023347

18 Mac bl2s 11776 0.999992 0.135870 0.498302 3.036735 0.013915

19 Linux md5 6656 0.999850 1.384615 0.492788 3.275362 -0.005618

20 Linux md5 5632 0.999994 0.045455 0.498580 3.247863 -0.004980

21 Linux md5 50176 0.999944 3.928890 0.504424 3.123445 0.006220

22 Windows md5 2304 0.999986 0.043403 0.502170 2.750000 -0.008700

23 Windows md5 5504 0.999790 1.605378 0.491461 3.157895 -0.006107

24 Windows md5 11520 0.999948 0.833681 0.495747 3.100000 -0.010490

25 Mac md5 5632 0.999934 0.517756 0.495206 3.384615 0.030451

26 Mac md5 6656 0.999850 1.384615 0.492788 3.275362 -0.005618

27 Mac md5 11776 0.999962 0.628057 0.496349 3.102041 -0.003111

28 Linux s1 6560 0.999846 1.404878 0.492683 3.264706 0.005885

29 Linux s1 5600 0.999853 1.142857 0.507143 3.137931 -0.011635

30 Linux s1 50080 0.999993 0.511182 0.498403 3.137105 0.001667

56

31 Windows s1 2240 0.999917 0.257143 0.494643 3.217391 -0.005473

32 Windows s1 5600 0.999860 1.086429 0.493036 3.206897 0.015523

33 Windows s1 11520 0.999969 0.501389 0.503299 3.066667 -0.005599

34 Mac s1 5600 0.999923 0.600714 0.505179 3.275862 -0.000822

35 Mac s1 6560 0.999846 1.404878 0.492683 3.264706 0.005885

36 Mac s1 11680 1.000000 0.003082 0.500257 3.209877 -0.001713

37 Linux s2224 6720 0.999998 0.021429 0.500893 3.057143 0.011306

38 Linux s2224 5600 0.999994 0.045714 0.498571 3.275862 -0.006437

39 Linux s2224 50176 0.999959 2.817602 0.503747 3.154067 -0.002288

40 Windows s2224 2240 0.999792 0.644643 0.491518 3.478261 -0.019936

41 Windows s2224 5600 0.999830 1.320714 0.507679 2.724138 0.002622

42 Windows s2224 11648 0.999808 3.099245 0.508156 3.123967 0.004886

43 Mac s2224 5600 0.999845 1.200714 0.507321 2.931034 0.019790

44 Mac s2224 6720 0.999998 0.021429 0.500893 3.057143 0.011306

45 Mac s2224 11872 0.999976 0.389488 0.497136 3.206478 -0.012163

46 Linux s2512 6656 0.999741 2.385216 0.490535 3.275362 -0.000358

47 Linux s2512 5632 0.999971 0.230114 0.496804 3.589744 -0.005013

48 Linux s2512 50176 0.999998 0.121253 0.500777 3.027751 -0.006858

49 Windows s2512 2560 0.999841 0.564063 0.492578 3.245283 -0.001783

50 Windows s2512 5632 0.999661 2.642756 0.510831 3.418803 -0.006865

51 Windows s2512 11776 0.999970 0.490489 0.496773 3.069388 0.006412

52 Mac s2512 5632 0.999847 1.193892 0.492720 3.008547 -0.011578

53 Mac s2512 6656 0.999741 2.385216 0.490535 3.275362 -0.000358

54 Mac s2512 11776 0.999904 1.570652 0.494226 3.232653 -0.002851

55 Linux s256 6656 0.999896 0.961538 0.493990 3.159420 0.000457

56 Linux s256 5632 0.999987 0.102273 0.497869 2.769231 -0.019195

57 Linux s256 50176 0.999978 1.518176 0.497250 3.234450 -0.006408

58 Windows s256 2304 0.999783 0.694444 0.491319 3.333333 0.004908

59 Windows s256 5632 0.999715 2.227273 0.509943 3.076923 0.022341

60 Windows s256 11520 0.999727 4.355556 0.509722 3.116667 -0.010799

61 Mac s256 5632 0.999999 0.006392 0.499467 3.350427 -0.004263

62 Mac s256 6656 0.999896 0.961538 0.493990 3.159420 0.000457

57

63 Mac s256 11776 0.999880 1.961957 0.493546 3.151020 -0.005602

64 Linux s3224 6720 0.999946 0.500595 0.504315 3.057143 0.013617

65 Linux s3224 5600 0.999669 2.571429 0.489286 3.103448 0.019550

66 Linux s3224 50176 0.999914 5.985013 0.494539 3.146411 -0.001953

67 Windows s3224 2240 0.999998 0.007143 0.499107 3.652174 -0.017860

68 Windows s3224 5600 0.999979 0.160714 0.502679 3.241379 -0.015029

69 Windows s3224 11648 0.999936 1.038805 0.495278 3.206612 -0.006271

70 Mac s3224 5600 0.999669 2.571429 0.510714 3.172414 0.007401

71 Mac s3224 6720 0.999946 0.500595 0.504315 3.057143 0.013617

72 Mac s3224 11872 0.999999 0.008423 0.499579 3.028340 0.003705

73 Linux s3256 6656 0.999850 1.384615 0.507212 3.275362 -0.001410

74 Linux s3256 5632 0.999980 0.159801 0.502663 2.905983 0.002102

75 Linux s3256 50176 0.999988 0.829401 0.497967 3.211483 -0.006075

76 Windows s3256 2304 0.999804 0.626736 0.491753 2.916667 -0.012428

77 Windows s3256 5632 0.999980 0.159801 0.497337 2.632479 0.002813

78 Windows s3256 11520 0.999978 0.355556 0.502778 2.900000 0.006219

79 Mac s3256 5632 0.999934 0.517756 0.504794 3.145299 -0.029924

80 Mac s3256 6656 0.999850 1.384615 0.507212 3.275362 -0.001410

81 Mac s3256 11776 0.999983 0.285666 0.497537 3.248980 -0.010215

82 Linux s3384 6912 1.000000 0.000579 0.500145 3.194444 0.017361

83 Linux s3384 5760 0.999765 1.877778 0.490972 2.966667 -0.003105

84 Linux s3384 50304 0.999958 2.900843 0.503797 3.171756 0.001612

85 Windows s3384 2304 0.999893 0.340278 0.493924 3.500000 0.020689

86 Windows s3384 5760 1.000000 0.000000 0.500000 3.266667 0.005556

87 Windows s3384 11520 0.999996 0.068056 0.498785 3.300000 -0.018409

88 Mac s3384 5760 0.999727 2.177778 0.490278 3.200000 0.004485

89 Mac s3384 6912 1.000000 0.000579 0.500145 3.194444 0.017361

90 Mac s3384 11904 0.999996 0.065860 0.498824 3.145161 0.001003

91 Linux s3512 6656 0.999998 0.021635 0.500901 3.043478 0.007208

92 Linux s3512 5632 0.999247 5.881392 0.516158 3.111111 0.011041

93 Linux s3512 50176 0.999997 0.191406 0.499023 3.184689 0.001591

94 Windows s3512 2560 0.999989 0.039062 0.501953 3.169811 -0.000015

58

95 Windows s3512 5632 0.999974 0.205256 0.503018 3.111111 -0.000036

96 Windows s3512 11776 1.000000 0.000340 0.499915 3.363265 -0.004755

97 Mac s3512 5632 0.999967 0.256392 0.503374 3.247863 -0.005728

98 Mac s3512 6656 0.999998 0.021635 0.500901 3.043478 0.007208

99 Mac s3512 11776 0.999883 1.910666 0.506369 3.053061 -0.002540

100 Linux s384 6912 0.999978 0.208912 0.502749 3.361111 -0.000030

101 Linux s384 5760 0.999854 1.167361 0.507118 3.000000 -0.000203

102 Linux s384 50304 0.999985 1.015347 0.497754 3.152672 0.010874

103 Windows s384 2304 0.999760 0.765625 0.490885 3.333333 -0.009016

104 Windows s384 5760 0.999893 0.850694 0.506076 2.800000 0.008187

105 Windows s384 11520 0.999905 1.512500 0.494271 3.133333 0.006467

106 Mac s384 5760 0.999993 0.056250 0.498437 3.133333 -0.002788

107 Mac s384 6912 0.999978 0.208912 0.502749 3.361111 -0.000030

108 Mac s384 11904 0.999999 0.008401 0.500420 3.080645 -0.008065

109 Linux ske128 53248 0.999998 0.126277 0.500770 3.184851 -0.006388

110 Linux ske128 45056 0.999986 0.852628 0.502175 3.087420 0.000070

111 Linux ske128 401408 0.999993 3.671566 0.501512 3.097823 -0.002929

112 Windows ske128 18432 0.999917 2.126953 0.505371 3.041667 -0.005975

113 Windows ske128 44032 0.999998 0.093023 0.500727 3.097056 0.003450

114 Windows ske128 92160 0.999999 0.117361 0.500564 3.104167 -0.003387

115 Mac ske128 45056 0.999999 0.079901 0.500666 3.223881 -0.007726

116 Mac ske128 53248 0.999998 0.126277 0.500770 3.184851 -0.006388

117 Mac ske128 94208 0.999986 1.854662 0.502218 3.080530 -0.001463

118 Linux ske256 53248 0.999989 0.844050 0.498009 3.065825 0.001036

119 Linux ske256 45056 0.999984 1.016424 0.497625 3.159915 0.000421

120 Linux ske256 401408 0.999996 2.000000 0.501116 3.106912 0.000324

121 Windows ske256 18432 0.999915 2.170139 0.505425 3.166667 0.004874

122 Windows ske256 45056 0.999998 0.096680 0.499268 3.070362 -0.002843

123 Windows ske256 92160 0.999999 0.108507 0.499457 3.133333 -0.003039

124 Mac ske256 45056 0.999976 1.523526 0.502907 3.113006 -0.001099

125 Mac ske256 53248 0.999989 0.844050 0.498009 3.065825 0.001036

59

126 Mac ske256 94208 0.999996 0.495245 0.498854 3.233435 -0.002680

Table of Hashed Packet Data ENT results (by Bytes)

Operating.System Hash Size Entropy Chi.Sq. Mean MC.Pi Serial.Correlation

1 Linux bl2b 832 7.710039 300.307692 127.264423 3.217391 -0.018633

2 Linux bl2b 704 7.702965 261.818182 126.428977 3.247863 0.014207

3 Linux bl2b 6272 7.969971 254.938776 127.346301 3.058373 0.007395

4 Windows bl2b 320 7.270584 291.200000 121.150000 3.396226 0.056477

5 Windows bl2b 704 7.715849 242.181818 129.509943 2.974359 -0.069928

6 Windows bl2b 1472 7.892107 212.869565 127.847826 3.134694 0.016110

7 Mac bl2b 704 7.713464 267.636364 129.460227 3.111111 -0.042946

8 Mac bl2b 832 7.710039 300.307692 127.264423 3.217391 -0.018633

9 Mac bl2b 1472 7.876650 254.608696 127.368886 3.118367 0.004450

10 Linux bl2s 832 7.773328 238.769231 125.485577 3.304348 0.040503

11 Linux bl2s 704 7.738005 226.909091 127.433239 3.145299 0.006780

12 Linux bl2s 6272 7.972498 240.000000 127.052136 3.196172 0.005147

13 Windows bl2s 288 7.304656 238.222222 128.576389 3.000000 0.050329

14 Windows bl2s 704 7.660487 285.818182 130.575284 3.145299 -0.025152

15 Windows bl2s 1440 7.843532 293.688889 126.505556 3.116667 0.006463

16 Mac bl2s 704 7.729896 233.454545 125.386364 3.179487 0.030814

17 Mac bl2s 832 7.773328 238.769231 125.485577 3.304348 0.040503

18 Mac bl2s 1472 7.877831 232.000000 129.487092 3.036735 -0.037924

19 Linux md5 832 7.792125 225.230769 125.064904 3.275362 0.023621

20 Linux md5 704 7.750837 219.636364 127.099432 3.247863 -0.018354

21 Linux md5 6272 7.975274 214.938776 129.631696 3.123445 -0.000403

22 Windows md5 288 7.269933 247.111111 126.934028 2.750000 -0.043805

23 Windows md5 688 7.694080 280.186047 127.311047 3.157895 0.075736

24 Windows md5 1440 7.861282 275.200000 125.158333 3.100000 0.013610

25 Mac md5 704 7.682353 280.727273 125.585227 3.384615 -0.002881

26 Mac md5 832 7.792125 225.230769 125.064904 3.275362 0.023621

27 Mac md5 1472 7.872019 252.869565 127.814538 3.102041 -0.019107

60

28 Linux s1 820 7.758565 248.956098 129.296341 3.264706 -0.013552

29 Linux s1 700 7.783396 185.760000 129.557143 3.137931 -0.001530

30 Linux s1 6260 7.975602 214.100958 127.829393 3.137105 -0.000585

31 Windows s1 280 7.199130 270.400000 124.496429 3.217391 -0.066604

32 Windows s1 700 7.709263 263.291429 127.067143 3.206897 0.042612

33 Windows s1 1440 7.874314 250.311111 127.495139 3.066667 -0.002471

34 Mac s1 700 7.728470 230.377143 128.402857 3.275862 0.015743

35 Mac s1 820 7.758565 248.956098 129.296341 3.264706 -0.013552

36 Mac s1 1460 7.872787 250.290411 125.832877 3.209877 0.026565

37 Linux s2224 840 7.753958 260.800000 128.400000 3.057143 0.057046

38 Linux s2224 700 7.742857 220.868571 128.710000 3.275862 0.015311

39 Linux s2224 6272 7.973649 227.265306 127.926977 3.154067 0.006535

40 Windows s2224 280 7.278507 241.142857 123.903571 3.478261 -0.043458

41 Windows s2224 700 7.723549 234.765714 130.487143 2.724138 -0.064134

42 Windows s2224 1456 7.865446 275.164835 131.181319 3.123967 0.003073

43 Mac s2224 700 7.692566 272.068571 131.611429 2.931034 -0.034132

44 Mac s2224 840 7.753958 260.800000 128.400000 3.057143 0.057046

45 Mac s2224 1484 7.868655 257.628032 126.528976 3.206478 -0.004081

46 Linux s2512 832 7.704390 306.461538 126.534856 3.275362 -0.029305

47 Linux s2512 704 7.670309 297.454545 123.305398 3.589744 0.006054

48 Linux s2512 6272 7.967540 278.530612 129.594228 3.027751 0.013194

49 Windows s2512 320 7.334577 259.200000 125.846875 3.245283 0.032896

50 Windows s2512 704 7.695319 257.454545 127.291193 3.418803 0.060673

51 Windows s2512 1472 7.871521 248.347826 128.235054 3.069388 0.031987

52 Mac s2512 704 7.698028 257.454545 127.694602 3.008547 0.006978

53 Mac s2512 832 7.704390 306.461538 126.534856 3.275362 -0.029305

54 Mac s2512 1472 7.891616 213.913043 128.177310 3.232653 0.022711

55 Linux s256 832 7.779267 245.538462 126.610577 3.159420 -0.000649

56 Linux s256 704 7.710811 245.090909 129.092330 2.769231 0.000002

57 Linux s256 6272 7.971919 239.265306 126.325733 3.234450 -0.002037

58 Windows s256 288 7.234864 264.888889 130.118056 3.333333 -0.047004

59 Windows s256 704 7.683751 276.363636 129.930398 3.076923 -0.076702

61

60 Windows s256 1440 7.880827 232.177778 132.816667 3.116667 -0.004271

61 Mac s256 704 7.695856 273.454545 125.764205 3.350427 -0.022197

62 Mac s256 832 7.779267 245.538462 126.610577 3.159420 -0.000649

63 Mac s256 1472 7.878207 224.347826 124.204484 3.151020 -0.025419

64 Linux s3224 840 7.778400 236.419048 128.988095 3.057143 0.013207

65 Linux s3224 700 7.702655 259.634286 124.245714 3.103448 -0.044994

66 Linux s3224 6272 7.967804 275.918367 125.329401 3.146411 -0.000142

67 Windows s3224 280 7.242436 252.114286 123.835714 3.652174 -0.010893

68 Windows s3224 700 7.739539 247.200000 129.010000 3.241379 0.020837

69 Windows s3224 1456 7.859315 270.593407 126.365385 3.206612 0.008682

70 Mac s3224 700 7.683715 265.485714 129.378571 3.172414 -0.002125

71 Mac s3224 840 7.778400 236.419048 128.988095 3.057143 0.013207

72 Mac s3224 1484 7.877415 241.067385 127.932615 3.028340 0.003752

73 Linux s3256 832 7.753414 256.000000 128.602163 3.275362 0.048506

74 Linux s3256 704 7.741961 224.000000 131.028409 2.905983 0.047420

75 Linux s3256 6272 7.965849 289.632653 126.299107 3.211483 0.020687

76 Windows s3256 288 7.234292 259.555556 128.000000 2.916667 0.061016

77 Windows s3256 704 7.703964 264.727273 127.936080 2.632479 -0.005221

78 Windows s3256 1440 7.866361 254.222222 130.946528 2.900000 0.025603

79 Mac s3256 704 7.687196 277.818182 128.656250 3.145299 0.036072

80 Mac s3256 832 7.753414 256.000000 128.602163 3.275362 0.048506

81 Mac s3256 1472 7.855335 288.000000 128.259511 3.248980 0.038541

82 Linux s3384 864 7.761851 254.814815 128.918981 3.194444 -0.015815

83 Linux s3384 720 7.715698 252.800000 127.777778 2.966667 -0.041907

84 Linux s3384 6288 7.972837 232.427481 128.986641 3.171756 0.004582

85 Windows s3384 288 7.213459 282.666667 124.416667 3.500000 -0.015012

86 Windows s3384 720 7.747280 223.644444 129.375000 3.266667 -0.042779

87 Windows s3384 1440 7.859569 267.377778 127.314583 3.300000 -0.017518

88 Mac s3384 720 7.763615 215.822222 124.181944 3.200000 -0.007164

89 Mac s3384 864 7.761851 254.814815 128.918981 3.194444 -0.015815

90 Mac s3384 1488 7.871211 258.236559 125.281586 3.145161 0.009742

91 Linux s3512 832 7.766552 248.000000 128.135817 3.043478 0.021811

62

92 Linux s3512 704 7.662472 268.363636 131.238636 3.111111 -0.052930

93 Linux s3512 6272 7.971745 243.428571 126.980230 3.184689 -0.015177

94 Windows s3512 320 7.396562 222.400000 123.125000 3.169811 -0.082289

95 Windows s3512 704 7.731868 242.181818 130.046875 3.111111 -0.087689

96 Windows s3512 1472 7.882993 233.043478 125.650136 3.363265 -0.028381

97 Mac s3512 704 7.761054 214.545455 126.816761 3.247863 -0.022706

98 Mac s3512 832 7.766552 248.000000 128.135817 3.043478 0.021811

99 Mac s3512 1472 7.862705 269.913043 125.770380 3.053061 -0.044422

100 Linux s384 864 7.773845 247.703704 128.181713 3.361111 -0.021854

101 Linux s384 720 7.736049 244.977778 133.411111 3.000000 0.016837

102 Linux s384 6288 7.968660 275.175573 126.286896 3.152672 -0.008539

103 Windows s384 288 7.278580 254.222222 121.520833 3.333333 0.024395

104 Windows s384 720 7.759210 215.822222 128.675000 2.800000 0.015283

105 Windows s384 1440 7.873597 243.555556 127.036111 3.133333 0.026074

106 Mac s384 720 7.672383 269.866667 126.418056 3.133333 -0.033970

107 Mac s384 864 7.773845 247.703704 128.181713 3.361111 -0.021854

108 Mac s384 1488 7.865237 265.462366 128.364919 3.080645 0.006206

109 Linux ske128 6656 7.970905 265.846154 126.759465 3.184851 -0.000201

110 Linux ske128 5632 7.967123 258.909091 127.199929 3.087420 0.014356

111 Linux ske128 50176 7.996414 249.459184 128.226244 3.097823 0.003339

112 Windows ske128 2304 7.916286 264.666667 128.543837 3.041667 -0.031410

113 Windows ske128 5504 7.967025 251.534884 127.953852 3.097056 -0.010840

114 Windows ske128 11520 7.982189 278.977778 127.773003 3.104167 -0.007903

115 Mac ske128 5632 7.974622 200.090909 127.500888 3.223881 0.000357

116 Mac ske128 6656 7.970905 265.846154 126.759465 3.184851 -0.000201

117 Mac ske128 11776 7.983905 257.739130 127.984800 3.080530 -0.009015

118 Linux ske256 6656 7.977339 207.000000 127.836088 3.065825 -0.004594

119 Linux ske256 5632 7.964023 281.090909 125.890980 3.159915 0.010597

120 Linux ske256 50176 7.996496 241.836735 127.928890 3.106912 0.003930

121 Windows ske256 2304 7.919073 252.888889 127.405382 3.166667 0.007476

122 Windows ske256 5632 7.967695 247.545455 128.561435 3.070362 0.008183

123 Windows ske256 11520 7.983745 259.955556 127.478125 3.133333 -0.003942

63

124 Mac ske256 5632 7.964904 271.000000 128.811435 3.113006 -0.023878

125 Mac ske256 6656 7.977339 207.000000 127.836088 3.065825 -0.004594

126 Mac ske256 11776 7.983456 265.000000 126.689963 3.233435 -0.003222

64

Appendix B

Kruskal-Wallis Dunn Confidence Intervals for mean differences

Entropy

1 Kruskal−Wal l i s rank sum t e s t

3 data : x and group

Kruskal−Wal l i s chi−squared = 38 .5698 , df = 13 , p−value = 0

5

7 Comparison o f x by group

(No adjustment)

9 Col Mean−|

Row Mean | bl2b b l 2 s md5 s1 s2224 s2512

11 −−−−−−−−−+−−

b l 2 s | −0.284006

13 | 0 .3882

|

15 md5 | −0.329189 −0.045182

| 0 .3710 0 .4820

17 |

s1 | −0.490557 −0.206550 −0.161367

19 | 0 .3119 0 .4182 0 .4359

|

21 s2224 | −0.187186 0.096820 0.142003 0.303371

| 0 .4258 0 .4614 0 .4435 0 .3808

23 |

s2512 | 0 .309825 0.593832 0.639015 0.800383 0.497012

25 | 0 .3783 0 .2763 0 .2614 0 .2117 0 .3096

|

27 s256 | −0.329189 −0.045182 0.000000 0.161367 −0.142003 −0.639015

| 0 .3710 0 .4820 0 .5000 0 .4359 0 .4435 0 .2614

29 |

s3224 | −0.213005 0.071001 0.116184 0.277552 −0.025818 −0.522831

65

31 | 0 .4157 0 .4717 0 .4538 0 .3907 0 .4897 0 .3005

|

33 s3256 | 0 .083911 0.367918 0.413101 0.574468 0.271097 −0.225914

| 0 .4666 0 .3565 0 .3398 0 .2828 0 .3932 0 .4106

35 |

s3384 | −0.438919 −0.154912 −0.109729 0.051637 −0.251733 −0.748745

37 | 0 .3304 0 .4384 0 .4563 0 .4794 0 .4006 0 .2270

|

39 s3512 | −0.406646 −0.122639 −0.077456 0.083911 −0.219459 −0.716472

| 0 .3421 0 .4512 0 .4691 0 .4666 0 .4131 0 .2368

41 |

s384 | −0.387282 −0.103275 −0.058092 0.103275 −0.200095 −0.697108

43 | 0 .3493 0 .4589 0 .4768 0 .4589 0 .4207 0 .2429

|

45 ske128 | −3.504904 −3.220897 −3.175714 −3.014346 −3.317718 −3.814730

| 0 .0002 0 .0006 0 .0007 0 .0013 0 .0005 0 .0001

47 |

ske256 | −3.537177 −3.253171 −3.207988 −3.046620 −3.349991 −3.847003

49 | 0 .0002 0 .0006 0 .0007 0 .0012 0 .0004 0 .0001

Col Mean−|

51 Row Mean | s256 s3224 s3256 s3384 s3512 s384

−−−−−−−−−+−−

53 s3224 | 0 .116184

| 0 .4538

55 |

s3256 | 0 .413101 0.296916

57 | 0 .3398 0 .3833

|

59 s3384 | −0.109729 −0.225914 −0.522831

| 0 .4563 0 .4106 0 .3005

61 |

s3512 | −0.077456 −0.193641 −0.490557 0.032273

63 | 0 .4691 0 .4232 0 .3119 0 .4871

|

65 s384 | −0.058092 −0.174277 −0.471193 0.051637 0.019364

| 0 .4768 0 .4308 0 .3188 0 .4794 0 .4923

67 |

ske128 | −3.175714 −3.291899 −3.588815 −3.065984 −3.098258 −3.117622

69 | 0 .0007 0 .0005 0 .0002 0 .0011 0 .0010 0 .0009

|

66

71 ske256 | −3.207988 −3.324172 −3.621089 −3.098258 −3.130531 −3.149895

| 0 .0007 0 .0004 0 .0001 0 .0010 0 .0009 0 .0008

73 Col Mean−|

Row Mean | ske128

75 −−−−−−−−−+−−−−−−−−−−−

ske256 | −0.032273

77 | 0 .4871

Serial Correlation

Kruskal−Wal l i s rank sum t e s t

2

data : x and group

4 Kruskal−Wal l i s chi−squared = 30 .198 , df = 13 , p−value = 0

6

Comparison o f x by group

8 (No adjustment)

Col Mean−|

10 Row Mean | bl2b b l 2 s md5 s1 s2224 s2512

−−−−−−−−−+−−

12 b l 2 s | −1.207029

| 0 .1137

14 |

md5 | −0.464738 0.742291

16 | 0 .3211 0 .2290

|

18 s1 | −0.232369 0.974660 0.232369

| 0 .4081 0 .1649 0 .4081

20 |

s2224 | −0.193641 1.013388 0.271097 0.038728

22 | 0 .4232 0 .1554 0 .3932 0 .4846

|

24 s2512 | −1.219939 −0.012909 −0.755200 −0.987569 −1.026297

| 0 .1112 0 .4949 0 .2251 0 .1617 0 .1524

26 |

s256 | 1 .213484 2.420514 1.678223 1.445853 1.407125 2.433423

67

28 | 0 .1125 0 .0077 0 .0467 0 .0741 0 .0797 0 .0075

|

30 s3224 | −0.387282 0.819747 0.077456 −0.154912 −0.193641 0.832656

| 0 .3493 0 .2062 0 .4691 0 .4384 0 .4232 0 .2025

32 |

s3256 | −2.672247 −1.465217 −2.207508 −2.439878 −2.478606 −1.452308

34 | 0 .0038 0 .0714 0 .0136 0 .0073 0 .0066 0 .0732

|

36 s3384 | 1 .065026 2.272055 1.529764 1.297395 1.258667 2.284965

| 0 .1434 0 .0115 0 .0630 0 .0972 0 .1041 0 .0112

38 |

s3512 | 1 .516855 2.723885 1.981594 1.749224 1.710496 2.736794

40 | 0 .0647 0 .0032 0 .0238 0 .0401 0 .0436 0 .0031

|

42 s384 | −0.361463 0.845566 0.103275 −0.129094 −0.167822 0.858475

| 0 .3589 0 .1989 0 .4589 0 .4486 0 .4334 0 .1953

44 |

ske128 | 0 .238824 1.445853 0.703562 0.471193 0.432465 1.458763

46 | 0 .4056 0 .0741 0 .2409 0 .3188 0 .3327 0 .0723

|

48 ske256 | −0.051637 1.155392 0.413101 0.180731 0.142003 1.168301

| 0 .4794 0 .1240 0 .3398 0 .4283 0 .4435 0 .1213

50 Col Mean−|

Row Mean | s256 s3224 s3256 s3384 s3512 s384

52 −−−−−−−−−+−−

s3224 | −1.600766

54 | 0 .0547

|

56 s3256 | −3.885732 −2.284965

| 0 .0001 0 .0112

58 |

s3384 | −0.148458 1.452308 3.737273

60 | 0 .4410 0 .0732 0 .0001

|

62 s3512 | 0 .303371 1.904137 4.189103 0.451829

| 0 .3808 0 .0284 0 .0000 0 .3257

64 |

s384 | −1.574947 0.025818 2.310784 −1.426489 −1.878318

66 | 0 .0576 0 .4897 0 .0104 0 .0769 0 .0302

|

68

68 ske128 | −0.974660 0.626106 2.911071 −0.826202 −1.278031 0.600287

| 0 .1649 0 .2656 0 .0018 0 .2043 0 .1006 0 .2742

70 |

ske256 | −1.265122 0.335644 2.620609 −1.116663 −1.568493 0.309825

72 | 0 .1029 0 .3686 0 .0044 0 .1321 0 .0584 0 .3783

Col Mean−|

74 Row Mean | ske128

−−−−−−−−−+−−−−−−−−−−−

76 ske256 | −0.290461

| 0 .3857

Chi-Squared Test Statistic

1 Kruskal−Wal l i s rank sum t e s t

3 data : x and group

Kruskal−Wal l i s chi−squared = 13 .7721 , df = 13 , p−value = 0.39

5

7 Comparison o f x by group

(No adjustment)

9 Col Mean−|

Row Mean | bl2b b l 2 s md5 s1 s2224 s2512

11 −−−−−−−−−+−−

b l 2 s | 1 .875102

13 | 0 .0304

|

15 md5 | 1 .468454 −0.406648

| 0 .0710 0 .3421

17 |

s1 | 1 .842829 −0.032273 0.374375

19 | 0 .0327 0 .4871 0 .3541

|

21 s2224 | 1 .165081 −0.710021 −0.303372 −0.677748

| 0 .1220 0 .2388 0 .3808 0 .2490

23 |

s2512 | −0.261417 −2.136519 −1.729871 −2.104246 −1.426498

69

25 | 0 .3969 0 .0163 0 .0418 0 .0177 0 .0769

|

27 s256 | 1 .403906 −0.471196 −0.064547 −0.438922 0.238825 1.665323

| 0 .0802 0 .3188 0 .4743 0 .3304 0 .4056 0 .0479

29 |

s3224 | 0 .926255 −0.948847 −0.542198 −0.916573 −0.238825 1.187672

31 | 0 .1772 0 .1713 0 .2938 0 .1797 0 .4056 0 .1175

|

33 s3256 | −0.064547 −1.939650 −1.533001 −1.907376 −1.229628 0.196869

| 0 .4743 0 .0262 0 .0626 0 .0282 0 .1094 0 .4220

35 |

s3384 | 1 .239310 −0.635792 −0.229143 −0.603518 0.074229 1.500727

37 | 0 .1076 0 .2625 0 .4094 0 .2731 0 .4704 0 .0667

|

39 s3512 | 1 .936422 0.061320 0.467968 0.093593 0.771341 2.197840

| 0 .0264 0 .4756 0 .3199 0 .4627 0 .2203 0 .0140

41 |

s384 | 1 .113443 −0.761659 −0.355010 −0.729385 −0.051637 1.374860

43 | 0 .1328 0 .2231 0 .3613 0 .2329 0 .4794 0 .0846

|

45 ske128 | 0 .455059 −1.420043 −1.013394 −1.387769 −0.710021 0.716476

| 0 .3245 0 .0778 0 .1554 0 .0826 0 .2388 0 .2368

47 |

ske256 | 1 .177990 −0.697112 −0.290463 −0.664838 0.012909 1.439407

49 | 0 .1194 0 .2429 0 .3857 0 .2531 0 .4949 0 .0750

Col Mean−|

51 Row Mean | s256 s3224 s3256 s3384 s3512 s384

−−−−−−−−−+−−

53 s3224 | −0.477650

| 0 .3164

55 |

s3256 | −1.468454 −0.990803

57 | 0 .0710 0 .1609

|

59 s3384 | −0.164595 0.313055 1.303858

| 0 .4346 0 .3771 0 .0961

61 |

s3512 | 0 .532516 1.010167 2.000970 0.697112

63 | 0 .2972 0 .1562 0 .0227 0 .2429

|

70

65 s384 | −0.290463 0.187187 1.177990 −0.125867 −0.822979

| 0 .3857 0 .4258 0 .1194 0 .4499 0 .2053

67 |

ske128 | −0.948847 −0.471196 0.519606 −0.784251 −1.481363 −0.658383

69 | 0 .1713 0 .3188 0 .3017 0 .2164 0 .0693 0 .2551

|

71 ske256 | −0.225916 0.251734 1.242538 −0.061320 −0.758432 0.064547

| 0 .4106 0 .4006 0 .1070 0 .4756 0 .2241 0 .4743

73 Col Mean−|

Row Mean | ske128

75 −−−−−−−−−+−−−−−−−−−−−

ske256 | 0 .722931

77 | 0 .2349

71

Appendix C

Tukey Honestly Significant Differences

1 Tukey mul t i p l e comparisons o f means

95% family−wise c o n f i d e n c e l e v e l

3

Fit : aov (formula = d f B $ S e r i a l . C o r r e l a t i o n ~ dfB$Hash)

5

Df Sum Sq Mean Sq F value Pr(>F)

7 dfB$Hash 13 0.03032 0.0023321 2 .938 0.00104 ∗∗

Res idua l s 112 0 .08891 0.0007938

9

11 $ ‘ dfB$Hash ‘

d i f f lwr upr p adj

13 bl2s −bl2b 0.0187737778 −0.026766335 0.0643138905 0.9784332

md5−bl2b 0.0115043333 −0.034035779 0.0570444460 0.9998304

15 s1−bl2b 0.0042363333 −0.041303779 0.0497764460 1.0000000

s2224−bl2b 0.0049674444 −0.040572668 0.0505075572 1.0000000

17 s2512−bl2b 0.0185982222 −0.026941890 0.0641383349 0.9800751

s256−bl2b −0.0141583333 −0.059698446 0.0313817794 0.9984545

19 s3224−bl2b 0.0058924444 −0.039647668 0.0514325572 0.9999999

s3256−bl2b 0.0414034444 −0.004136668 0.0869435572 0.1158168

21 s3384−bl2b −0.0100205556 −0.055560668 0.0355195572 0.9999644

s3512−bl2b −0.0264967778 −0.072036890 0.0190433349 0.7674090

23 s384−bl2b 0.0060087778 −0.039531335 0.0515488905 0.9999999

ske128−bl2b 0.0011092222 −0.044430890 0.0466493349 1.0000000

25 ske256−bl2b 0.0046063333 −0.040933779 0.0501464460 1.0000000

md5−b l 2 s −0.0072694444 −0.052809557 0.0382706683 0.9999992

27 s1−b l 2 s −0.0145374444 −0.060077557 0.0310026683 0.9979816

s2224−b l 2 s −0.0138063333 −0.059346446 0.0317337794 0.9988056

29 s2512−b l 2 s −0.0001755556 −0.045715668 0.0453645572 1.0000000

s256−b l 2 s −0.0329321111 −0.078472224 0.0126080016 0.4315838

31 s3224−b l 2 s −0.0128813333 −0.058421446 0.0326587794 0.9994217

s3256−b l 2 s 0.0226296667 −0.022910446 0.0681697794 0.9103458

33 s3384−b l 2 s −0.0287943333 −0.074334446 0.0167457794 0.6528779

72

s3512−b l 2 s −0.0452705556 −0.090810668 0.0002695572 0.0529957

35 s384−b l 2 s −0.0127650000 −0.058305113 0.0327751127 0.9994749

ske128−b l 2 s −0.0176645556 −0.063204668 0.0278755572 0.9872403

37 ske256−b l 2 s −0.0141674444 −0.059707557 0.0313726683 0.9984444

s1−md5 −0.0072680000 −0.052808113 0.0382721127 0.9999992

39 s2224−md5 −0.0065368889 −0.052077002 0.0390032238 0.9999998

s2512−md5 0.0070938889 −0.038446224 0.0526340016 0.9999994

41 s256−md5 −0.0256626667 −0.071202779 0.0198774460 0.8043930

s3224−md5 −0.0056118889 −0.051152002 0.0399282238 1.0000000

43 s3256−md5 0.0298991111 −0.015641002 0.0754392238 0.5937301

s3384−md5 −0.0215248889 −0.067065002 0.0240152238 0.9369658

45 s3512−md5 −0.0380011111 −0.083541224 0.0075390016 0.2107740

s384−md5 −0.0054955556 −0.051035668 0.0400445572 1.0000000

47 ske128−md5 −0.0103951111 −0.055935224 0.0351450016 0.9999457

ske256−md5 −0.0068980000 −0.052438113 0.0386421127 0.9999996

49 s2224−s1 0.0007311111 −0.044809002 0.0462712238 1.0000000

s2512−s1 0.0143618889 −0.031178224 0.0599020016 0.9982140

51 s256−s1 −0.0183946667 −0.063934779 0.0271454460 0.9818554

s3224−s1 0.0016561111 −0.043884002 0.0471962238 1.0000000

53 s3256−s1 0.0371671111 −0.008373002 0.0827072238 0.2407367

s3384−s1 −0.0142568889 −0.059797002 0.0312832238 0.9983417

55 s3512−s1 −0.0307331111 −0.076273224 0.0148070016 0.5485149

s384−s1 0.0017724444 −0.043767668 0.0473125572 1.0000000

57 ske128−s1 −0.0031271111 −0.048667224 0.0424130016 1.0000000

ske256−s1 0.0003700000 −0.045170113 0.0459101127 1.0000000

59 s2512−s2224 0.0136307778 −0.031909335 0.0591708905 0.9989535

s256−s2224 −0.0191257778 −0.064665890 0.0264143349 0.9748280

61 s3224−s2224 0.0009250000 −0.044615113 0.0464651127 1.0000000

s3256−s2224 0.0364360000 −0.009104113 0.0819761127 0.2692148

63 s3384−s2224 −0.0149880000 −0.060528113 0.0305521127 0.9972652

s3512−s2224 −0.0314642222 −0.077004335 0.0140758905 0.5090041

65 s384−s2224 0.0010413333 −0.044498779 0.0465814460 1.0000000

ske128−s2224 −0.0038582222 −0.049398335 0.0416818905 1.0000000

67 ske256−s2224 −0.0003611111 −0.045901224 0.0451790016 1.0000000

s256−s2512 −0.0327565556 −0.078296668 0.0127835572 0.4406425

69 s3224−s2512 −0.0127057778 −0.058245890 0.0328343349 0.9995003

s3256−s2512 0.0228052222 −0.022734890 0.0683453349 0.9055285

71 s3384−s2512 −0.0286187778 −0.074158890 0.0169213349 0.6621147

s3512−s2512 −0.0450950000 −0.090635113 0.0004451127 0.0550289

73 s384−s2512 −0.0125894444 −0.058129557 0.0329506683 0.9995471

73

ske128−s2512 −0.0174890000 −0.063029113 0.0280511127 0.9883224

75 ske256−s2512 −0.0139918889 −0.059532002 0.0315482238 0.9986302

s3224−s256 0.0200507778 −0.025489335 0.0655908905 0.9631623

77 s3256−s256 0.0555617778 0.010021665 0.1011018905 0.0042898

s3384−s256 0.0041377778 −0.041402335 0.0496778905 1.0000000

79 s3512−s256 −0.0123384444 −0.057878557 0.0332016683 0.9996354

s384−s256 0.0201671111 −0.025373002 0.0657072238 0.9614513

81 ske128−s256 0.0152675556 −0.030272557 0.0608076683 0.9967211

ske256−s256 0.0187646667 −0.026775446 0.0643047794 0.9785209

83 s3256−s3224 0.0355110000 −0.010029113 0.0810511127 0.3081264

s3384−s3224 −0.0159130000 −0.061453113 0.0296271127 0.9951117

85 s3512−s3224 −0.0323892222 −0.077929335 0.0131508905 0.4597982

s384−s3224 0.0001163333 −0.045423779 0.0456564460 1.0000000

87 ske128−s3224 −0.0047832222 −0.050323335 0.0407568905 1.0000000

ske256−s3224 −0.0012861111 −0.046826224 0.0442540016 1.0000000

89 s3384−s3256 −0.0514240000 −0.096964113 −0.0058838873 0.0126122

s3512−s3256 −0.0679002222 −0.113440335 −0.0223601095 0.0001123

91 s384−s3256 −0.0353946667 −0.080934779 0.0101454460 0.3132401

ske128−s3256 −0.0402942222 −0.085834335 0.0052458905 0.1421496

93 ske256−s3256 −0.0367971111 −0.082337224 0.0087430016 0.2548928

s3512−s3384 −0.0164762222 −0.062016335 0.0290638905 0.9932179

95 s384−s3384 0.0160293333 −0.029510779 0.0615694460 0.9947615

ske128−s3384 0.0111297778 −0.034410335 0.0566698905 0.9998826

97 ske256−s3384 0.0146268889 −0.030913224 0.0601670016 0.9978537

s384−s3512 0.0325055556 −0.013034557 0.0780456683 0.4537038

99 ske128−s3512 0.0276060000 −0.017934113 0.0731461127 0.7140526

ske256−s3512 0.0311031111 −0.014437002 0.0766432238 0.5284778

101 ske128−s384 −0.0048995556 −0.050439668 0.0406405572 1.0000000

ske256−s384 −0.0014024444 −0.046942557 0.0441376683 1.0000000

103 ske256−ske128 0.0034971111 −0.042043002 0.0490372238 1.0000000

1 Tukey mul t i p l e comparisons o f means

95% family−wise c o n f i d e n c e l e v e l

3

Fit : aov (formula = dfB$Entropy ~ dfB$Hash)

5

Df Sum Sq Mean Sq F value Pr(>F)

7 dfB$Hash 13 0 .835 0 .06423 1 .891 0 .0383 ∗

74

Res idua l s 112 3 .803 0 .03396

9 −−−

11 $ ‘ dfB$Hash ‘

d i f f lwr upr p adj

13 bl2s −bl2b 1.243256 e−02 −0.28542014 0.3102852 1.0000000

md5−bl2b 1.426222 e−02 −0.28359047 0.3121149 1.0000000

15 s1−bl2b 1.093600 e−02 −0.28691669 0.3087887 1.0000000

s2224−bl2b 1.016411 e−02 −0.28768858 0.3080168 1.0000000

17 s2512−bl2b −2.664222e−03 −0.30051692 0.2951885 1.0000000

s256−bl2b 5.900111 e−03 −0.29195258 0.3037528 1.0000000

19 s3224−bl2b 7.556778 e−03 −0.29029592 0.3054095 1.0000000

s3256−bl2b 1.311111 e−05 −0.29783958 0.2978658 1.0000000

21 s3384−bl2b 1.174478 e−02 −0.28610792 0.3095975 1.0000000

s3512−bl2b 2.675944 e−02 −0.27109325 0.3246121 1.0000000

23 s384−bl2b 1.552644 e−02 −0.28232625 0.3133791 1.0000000

ske128−bl2b 2.408562 e−01 −0.05699647 0.5387089 0.2537821

25 ske256−bl2b 2.413780 e−01 −0.05647469 0.5392307 0.2506940

md5−b l 2 s 1 .829667 e−03 −0.29602303 0.2996824 1.0000000

27 s1−b l 2 s −1.496556e−03 −0.29934925 0.2963561 1.0000000

s2224−b l 2 s −2.268444e−03 −0.30012114 0.2955842 1.0000000

29 s2512−b l 2 s −1.509678e−02 −0.31294947 0.2827559 1.0000000

s256−b l 2 s −6.532444e−03 −0.30438514 0.2913202 1.0000000

31 s3224−b l 2 s −4.875778e−03 −0.30272847 0.2929769 1.0000000

s3256−b l 2 s −1.241944e−02 −0.31027214 0.2854332 1.0000000

33 s3384−b l 2 s −6.877778e−04 −0.29854047 0.2971649 1.0000000

s3512−b l 2 s 1 .432689 e−02 −0.28352581 0.3121796 1.0000000

35 s384−b l 2 s 3 .093889 e−03 −0.29475881 0.3009466 1.0000000

ske128−b l 2 s 2 .284237 e−01 −0.06942903 0.5262764 0.3343741

37 ske256−b l 2 s 2 .289454 e−01 −0.06890725 0.5267981 0.3307328

s1−md5 −3.326222e−03 −0.30117892 0.2945265 1.0000000

39 s2224−md5 −4.098111e−03 −0.30195081 0.2937546 1.0000000

s2512−md5 −1.692644e−02 −0.31477914 0.2809262 1.0000000

41 s256−md5 −8.362111e−03 −0.30621481 0.2894906 1.0000000

s3224−md5 −6.705444e−03 −0.30455814 0.2911472 1.0000000

43 s3256−md5 −1.424911e−02 −0.31210181 0.2836036 1.0000000

s3384−md5 −2.517444e−03 −0.30037014 0.2953352 1.0000000

45 s3512−md5 1.249722 e−02 −0.28535547 0.3103499 1.0000000

s384−md5 1.264222 e−03 −0.29658847 0.2991169 1.0000000

47 ske128−md5 2.265940 e−01 −0.07125869 0.5244467 0.3473093

75

ske256−md5 2.271158 e−01 −0.07073692 0.5249685 0.3435944

49 s2224−s1 −7.718889e−04 −0.29862458 0.2970808 1.0000000

s2512−s1 −1.360022e−02 −0.31145292 0.2842525 1.0000000

51 s256−s1 −5.035889e−03 −0.30288858 0.2928168 1.0000000

s3224−s1 −3.379222e−03 −0.30123192 0.2944735 1.0000000

53 s3256−s1 −1.092289e−02 −0.30877558 0.2869298 1.0000000

s3384−s1 8 .087778 e−04 −0.29704392 0.2986615 1.0000000

55 s3512−s1 1 .582344 e−02 −0.28202925 0.3136761 1.0000000

s384−s1 4 .590444 e−03 −0.29326225 0.3024431 1.0000000

57 ske128−s1 2 .299202 e−01 −0.06793247 0.5277729 0.3239880

ske256−s1 2 .304420 e−01 −0.06741069 0.5282947 0.3204089

59 s2512−s2224 −1.282833e−02 −0.31068103 0.2850244 1.0000000

s256−s2224 −4.264000e−03 −0.30211669 0.2935887 1.0000000

61 s3224−s2224 −2.607333e−03 −0.30046003 0.2952454 1.0000000

s3256−s2224 −1.015100e−02 −0.30800369 0.2877017 1.0000000

63 s3384−s2224 1.580667 e−03 −0.29627203 0.2994334 1.0000000

s3512−s2224 1.659533 e−02 −0.28125736 0.3144480 1.0000000

65 s384−s2224 5.362333 e−03 −0.29249036 0.3032150 1.0000000

ske128−s2224 2.306921 e−01 −0.06716058 0.5285448 0.3187011

67 ske256−s2224 2.312139 e−01 −0.06663881 0.5290666 0.3151546

s256−s2512 8.564333 e−03 −0.28928836 0.3064170 1.0000000

69 s3224−s2512 1.022100 e−02 −0.28763169 0.3080737 1.0000000

s3256−s2512 2.677333 e−03 −0.29517536 0.3005300 1.0000000

71 s3384−s2512 1.440900 e−02 −0.28344369 0.3122617 1.0000000

s3512−s2512 2.942367 e−02 −0.26842903 0.3272764 1.0000000

73 s384−s2512 1.819067 e−02 −0.27966203 0.3160434 1.0000000

ske128−s2512 2.435204 e−01 −0.05433225 0.5413731 0.2382714

75 ske256−s2512 2.440422 e−01 −0.05381047 0.5418949 0.2353088

s3224−s256 1.656667 e−03 −0.29619603 0.2995094 1.0000000

77 s3256−s256 −5.887000e−03 −0.30373969 0.2919657 1.0000000

s3384−s256 5.844667 e−03 −0.29200803 0.3036974 1.0000000

79 s3512−s256 2.085933 e−02 −0.27699336 0.3187120 1.0000000

s384−s256 9.626333 e−03 −0.28822636 0.3074790 1.0000000

81 ske128−s256 2.349561 e−01 −0.06289658 0.5328088 0.2903827

ske256−s256 2.354779 e−01 −0.06237481 0.5333306 0.2870231

83 s3256−s3224 −7.543667e−03 −0.30539636 0.2903090 1.0000000

s3384−s3224 4.188000 e−03 −0.29366469 0.3020407 1.0000000

85 s3512−s3224 1.920267 e−02 −0.27865003 0.3170554 1.0000000

s384−s3224 7.969667 e−03 −0.28988303 0.3058224 1.0000000

87 ske128−s3224 2.332994 e−01 −0.06455325 0.5311521 0.3012039

76

ske256−s3224 2.338212 e−01 −0.06403147 0.5316739 0.2977705

89 s3384−s3256 1.173167 e−02 −0.28612103 0.3095844 1.0000000

s3512−s3256 2.674633 e−02 −0.27110636 0.3245990 1.0000000

91 s384−s3256 1.551333 e−02 −0.28233936 0.3133660 1.0000000

ske128−s3256 2.408431 e−01 −0.05700958 0.5386958 0.2538600

93 ske256−s3256 2.413649 e−01 −0.05648781 0.5392176 0.2507713

s3512−s3384 1.501467 e−02 −0.28283803 0.3128674 1.0000000

95 s384−s3384 3.781667 e−03 −0.29407103 0.3016344 1.0000000

ske128−s3384 2.291114 e−01 −0.06874125 0.5269641 0.3295789

97 ske256−s3384 2.296332 e−01 −0.06821947 0.5274859 0.3259660

s384−s3512 −1.123300e−02 −0.30908569 0.2866197 1.0000000

99 ske128−s3512 2.140968 e−01 −0.08375592 0.5119495 0.4417969

ske256−s3512 2.146186 e−01 −0.08323414 0.5124712 0.4376686

101 ske128−s384 2.253298 e−01 −0.07252292 0.5231825 0.3563950

ske256−s384 2.258516 e−01 −0.07200114 0.5237042 0.3526307

103 ske256−ske128 5.217778 e−04 −0.29733092 0.2983745 1.0000000

77

Appendix D

Bonferroni Multiple Comparisons

1

Pairwi se comparisons us ing t t e s t s with pooled SD

3

data : dfB$Entropy and dfB$Hash

5

bl2b b l 2 s md5 s1 s2224 s2512 s256 s3224 s3256 s3384 s3512 s384 ske128

7 b l 2 s 1 .00 − − − − − − − − − − − −

md5 1 .00 1 .00 − − − − − − − − − − −

9 s1 1 .00 1 .00 1 .00 − − − − − − − − − −

s2224 1 .00 1 .00 1 .00 1 .00 − − − − − − − − −

11 s2512 1 .00 1 .00 1 .00 1 .00 1 .00 − − − − − − − −

s256 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 − − − − − − −

13 s3224 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 − − − − − −

s3256 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 − − − − −

15 s3384 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 − − − −

s3512 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 − − −

17 s384 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 − −

ske128 0 .59 0 .89 0 .94 0 .85 0 .83 0 .54 0 .72 0 .76 0 .59 0 .87 1 .00 0 .98 −

19 ske256 0 .58 0 .87 0 .93 0 .83 0 .81 0 .53 0 .71 0 .75 0 .58 0 .85 1 .00 0 .96 1 .00

Pa i rwi se comparisons us ing t t e s t s with pooled SD

2

data : d f B $ S e r i a l . C o r r e l a t i o n and dfB$Hash

4

bl2b b l 2 s md5 s1 s2224 s2512 s256 s3224 s3256

6 b l 2 s 1 .00000 − − − − − − − −

md5 1.00000 1.00000 − − − − − − −

8 s1 1 .00000 1.00000 1.00000 − − − − − −

s2224 1.00000 1.00000 1.00000 1.00000 − − − − −

10 s2512 1.00000 1.00000 1.00000 1.00000 1.00000 − − − −

78

s256 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 − − −

12 s3224 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 − −

s3256 0.21111 1.00000 1.00000 0.55053 0.64476 1.00000 0.00522 0.78495 −

14 s3384 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.01658

s3512 1.00000 0.08270 0.45849 1.00000 1.00000 0.08641 1.00000 1.00000 0.00012

16 s384 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.80441

ske128 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.27324

18 ske256 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.59652

s3384 s3512 s384 ske128

20 b l 2 s − − − −

md5 − − − −

22 s1 − − − −

s2224 − − − −

24 s2512 − − − −

s256 − − − −

26 s3224 − − − −

s3256 − − − −

28 s3384 − − − −

s3512 1.00000 − − −

30 s384 1.00000 1.00000 − −

ske128 1.00000 1.00000 1.00000 −

32 ske256 1.00000 1.00000 1.00000 1.00000

79

REFERENCES

[1] Anderson, R. The classification of hash functions, 1993.

[2] Bertoni, G., Daemen, J., Peeters, M., and Assche, G. V. The Keccak reference,
January 2011. http://keccak.noekeon.org/.

[3] Bertoni, G., Daemen, J., Peeters, M., Assche, G. V., and Keer, R. V. Keccak
implementation overview, May 2012. http://keccak.noekeon.org/.

[4] Blum, L., Blum, M., and Shub, M. A simple unpredictable pseudo-random number gener-
ator. SIAM Journal on Computing 15, 2 (1986 submitted 1982), 364–383.

[5] Blum, M. Independent unbiased coin flips from a correlated biased source: A finite state
markov chain. In 25th Annual Symposium onFoundations of Computer Science, 1984. (Oct
1984), pp. 425–433.

[6] Blum, M., and Micali, S. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing 13, 4 (1984), 850–864.

[7] Carter, J. L., and Wegman, M. N. Universal classes of hash functions.

[8] Chor, B., and Goldreich, O. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. In 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985) (Oct 1985), pp. 429–442.

[9] Coskun, B., and Memon, N. Confusion/diffusion capabilities of some robust hash functions.
In 2006 40th Annual Conference on Information Sciences and Systems (March 2006), pp. 1188–
1193.

[10] Damgaard, I. A design principle for hash functions. In CRYPTO (1989), G. Brassard, Ed.,
vol. 435 of LNCS, Springer, pp. 416–427.

[11] Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums, 2017. R
package version 1.3.4.

[12] Goldreich, O. 1 introduction and preliminaries. Foundations and Trends in Theoretical
Computer Science 1, 1 (April 2005).

[13] Goldreich, O., Krawczyk, H., and Luby, M. On the existence of pseudorandom genera-
tors. In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science (Oct
1988), pp. 12–24.

[14] H, J., Impagliazzo, R., Levin, L. A., and Luby, M. A pseudorandom generator from any
one-way function. SIAM J. Comput. 28, 4 (Mar. 1999), 1364–1396.

80

[15] Handschuh, H. SHA Family (Secure Hash Algorithm). Springer US, Boston, MA, 2005,
pp. 565–567.

[16] Hayashi, M., and Tsurumaru, T. More efficient privacy amplification with less random
seeds via dual universal hash function. IEEE Transactions on Information Theory 62, 4 (April
2016), 2213–2232.

[17] Hernandez-Castro, J., and Barrero, D. F. Evolutionary generation and degeneration
of randomness to assess the indepedence of the ent test battery. In 2017 IEEE Congress on
Evolutionary Computation (CEC) (June 2017), pp. 1420–1427.

[18] Herrewege, A. V., and Verbauwhede, I. Software only, extremely compact, keccak-based
secure prng on arm cortex-m. In 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC) (June 2014), pp. 1–6.

[19] Impagliazzo, R., Levin, L. A., and Luby, M. Pseudo-random generation from one-way
functions. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing
(New York, NY, USA, 1989), STOC ’89, ACM, pp. 12–24.

[20] Jain, R. A comparison of hashing schemes for address lookup in computer networks. IEEE
Transactions on Communications 40, 10 (Oct 1992), 1570–1573.

[21] Knuth, D. E. The art of computer programming., 2d ed.. ed. Addison-Wesley series in
computer science and information processing. Addison-Wesley Pub. Co, Reading, Mass., 1973.

[22] Lee, C.-J., Lu, C.-J., Tsai, S.-C., and Tzeng, W.-G. Extracting randomness from multiple
independent sources. IEEE Transactions on Information Theory 51, 6 (June 2005), 2224–2227.

[23] Levin, L. A. One-way functions and pseudorandom generators. In Proceedings of the
Seventeenth Annual ACM Symposium on Theory of Computing (New York, NY, USA, 1985),
STOC ’85, ACM, pp. 363–365.

[24] Li, M., and Vitanyi, P. M. B. Two decades of applied kolmogorov complexity: in memoriam
andrei nikolaevich kolmogorov 1903-87. In [1988] Proceedings. Structure in Complexity Theory
Third Annual Conference (Jun 1988), pp. 80–101.

[25] Łoza, S., and Matuszewski, L. A true random number generator using ring oscillators and
sha-256 as post-processing. In 2014 International Conference on Signals and Electronic Systems
(ICSES) (Sept 2014), pp. 1–4.

[26] Motara, Y. M., and Irwin, B. Sha-1 and the strict avalanche criterion. In 2016 Information
Security for South Africa (ISSA) (Aug 2016), pp. 35–40.

[27] NIST. Sha-3 competition (2007-2012), 2005.

[28] Oded Goldreich, S. G., and Micali, S. How to construct random functions.

[29] Rogaway, P., and Shrimpton, T. Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and
Collision Resistance. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 371–388.

81

[30] Shamir, A. On the generation of cryptographically strong pseudorandom sequences. ACM
Transactions on Computer Systems (TOCS) 1, 1 (1983), 38–44.

[31] Shannon, C. E. A mathematical theory of communication, 1948.

[32] Shannon, C. E. Communication theory of secrecy systems. Bell Labs Technical Journal 28,
4 (1949), 656–715.

[33] Sklavos, N., Kitsos, P., Papadomanolakis, K., and Koufopavlou, O. Random number
generator architecture and vlsi implementation. In 2002 IEEE International Symposium on
Circuits and Systems. Proceedings (Cat. No.02CH37353) (2002), vol. 4, pp. IV–854–IV–857
vol.4.

[34] Stinson, D. R. Some observations on the theory of cryptographic hash functions. Designs,
Codes and Cryptography 38, 2 (Feb 2006), 259–277.

[35] Tomamichel, M., Schaffner, C., Smith, A., and Renner, R. Leftover hashing against
quantum side information. IEEE Transactions on Information Theory 57, 8 (Aug 2011), 5524–
5535.

[36] von Neumann, J. Various techniques used in connection with random digits. In National
Bureau of Standards Applied Mathematics Series (1951), vol. 12, pp. 36–38.

[37] Walker, J. Hotbits: Genuine random numbers, generated by radioactive decay, 1996.

[38] Wang, B. J., Cao, H. J., Wang, Y. H., and Zhang, H. G. Random number generator of
bp neural network based on sha-2 (512). In 2007 International Conference on Machine Learning
and Cybernetics (Aug 2007), vol. 5, pp. 2708–2712.

[39] Wang, Y.-H., Zhang, H.-G., Shen, Z.-D., and Li, K.-S. Thermal noise random number
generator based on sha-2 (512). In 2005 International Conference on Machine Learning and
Cybernetics (Aug 2005), vol. 7, pp. 3970–3974 Vol. 7.

[40] Webster, A. F., and Tavares, S. E. On the Design of S-Boxes. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1986, pp. 523–534.

[41] Yao, A. C. Theory and application of trapdoor functions. In Foundations of Computer Science,
1982. SFCS’08. 23rd Annual Symposium on (1982), IEEE, pp. 80–91.

[42] Zhandry, M. How to construct quantum random functions. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science (Oct 2012), pp. 679–687.

82

