
Martingale Based Deep Neural Networks for high-dimensional
PDE and Optimal Stochastic Control Problems 1

W. Cai

Southern Methodist University

Illinois Institute of Technology
October 31, 2023

1joint work with Andrew He and Daniel Margolis

Outline of talk

▶ SDE based Deep Neural networks (DNNs) for PDEs

▶ Martingale problems for PDEs

▶ Martingale based DeepMartNet

▶ Numerical Results for PDEs

▶ DeepMartNet for Optimal Stochastic Controls

▶ Future work

Andrew He and Daniel Margolis

Review of SDE based Neural Networks for PDEs

Consider an Initial Value Problem (IVP) for Quasi-linear Problems

∂tu +
1

2
Tr[σσT∇∇u] + µ · ∇u = ϕ (1)

with the condition u(T , x) = g(x). Problem is to find solution at x , t = 0
u(0, x), and the solution is related to FBSDE (Pardoux-Peng, 1990)

dXt = µ(t,Xt ,Yt ,Zt)dt + σ(t,Xt ,Yt)dWt ,

X0 = ξ,
(2)

dYt = ϕ(t,Xt ,Yt ,Zt)dt + ZT
t σ(t,Xt ,Yt)dWt ,

YT = g(XT),
(3)

Namely,
Yt = u(t,Xt), Zt = ∇u(t,Xt). (4)

Example I: Deep BSDE by J. Han, E, et al. (2016)

The Deep BSDE trains the network with input X0 = ξ and output
Y0 = u(0,X). Apply the Euler–Maruyama scheme (EM) to the FBSDE (2)
and (3), respectively,

Xn+1 ≈ Xn + µ(tn,Xn,Yn,Zn)∆tn + σ(tn,Xn,Yn)∆Wn, (5)

Yn+1 ≈ Yn + ϕ(tn,Xn,Yn,Zn)∆tn + ZT
n σ(tn,Xn,Yn)∆Wn. (6)

The missing Zn+1 will be approximated by a NN at tn+1

∇u(tn,Xn|θn) 7→ Zn = ∇u(tn,Xn). (7)

Loss function: with Ensemble average approximation

Lossbsde(Y0, θ) = E ∥u(T ,XT)− g(XT)∥2 . (8)

where
u(T ,XT) = YN

Trainable parameters are {Y0, θn, n = 1, · · · ,N}.

Method 2: FBSNNs by M. Raissi

The FBSNNs trains the network with input pair (t,X0 = ξ) and output a NN
uθ(t, x).
Loss function is based on the differnence of two discrete Markov chains:

▶ Markov Chain one

Xn+1 = Xn + µ(tn,Xn,Yn,Zn)∆tn + σ(tn,Xn,Yn)∆Wn,

Yn+1 = u(tn+1,Xn+1),

Zn+1 = ∇u(tn+1,Xn+1).

(9)

▶ Reference process by using the EM scheme

Y ⋆
n+1 = Yn + ϕ(tn,Xn,Yn,Zn)∆tn + ZT

n σ(tn,Xn,Yn)∆Wn. (10)

▶ Loss function: a Monte Carlo approximation of

Lossfbsnn = E

[
N∑

n=1

∥Yn − Y ⋆
n ∥

2
+ ∥YN − g(XN)∥2 + ∥ZN −∇g(XN)∥2

]
.

(11)

Method 2 (continued): FBSNNs (An improvement by Zhang, Cai 2023)

▶ Markov chain one

Xn+1 = Xn + µ(tn,Xn,Yn,Zn)∆tn + σ(tn,Xn,Yn)∆Wn,

Yn+1 = Yn + ϕ(tn,Xn,Yn,Zn)∆tn + ZT
n σ(tn,Xn,Yn)∆Wn,

Zn+1 = ∇u(tn+1,Xn+1).

(12)

▶ Markov chain two
Y ⋆

n+1 = u(tn+1,Xn+1). (13)

▶ The loss function is a Monte Carlo approximation of

E

[
1

N

N∑
n=1

∥Yn − Y ⋆
n ∥

2
+ 0.02 ∥Y ⋆

N − g(XN)∥2 + 0.02 ∥ZN −∇g(XN)∥2
]
.

(14)
Half-order convergence of uθ(x,t) is observed due to the fact both processes
defined are Markov chain.

1/2-order convergence for Extrapolation for better accuracy of Y0

With modifed verions of FBSNN we have the error plots for N = 12, N = 48,
N = 192 and N = 768:

0.0 0.2 0.4 0.6 0.8 1.0
t

10 4

10 3

10 2

10 1

re
la

tiv
e

er
ro

r

Scheme 2: averaged error

N=12
N=48
N=192
N=768

0.0 0.2 0.4 0.6 0.8 1.0
t

10 4

10 3

10 2

10 1

re
la

tiv
e

er
ro

r

Scheme 2: avg error + 2x standard deviation

N=12
N=48
N=192
N=768

uN
θ - the trained network with N number of time steps.

Modified FBSNN-1 Modified FBSNN-2

N uN
θ uN

ex uN
θ uN

ex

12 2.91e-03 2.82e-03
48 1.67e-03 4.29e-04 1.13e-03 5.57e-04
192 7.58e-04 1.53e-04 8.43e-04 5.55e-04
768 6.77e-04 5.97e-04 5.96e-04 3.49e-04

Table: Relative error of Y0 from the network approximation and extrapolation.

Method III. fixed point of semi-group formulation for Eigenvalue Problem
(Lu, etal, 2020)

LΨ .
=

(
1

2
Tr[σσT∇∇] + µ · ∇

)
Ψ = λΨ

Reformulated as backward parabolic PDE

∂tu(t, x) + Lu(t, x)− λu(t, x) = 0

u(T , x) = Ψ(x) ≈ Ψθ(x),

So
u(T − t, ·) = Pλ

t Ψ, Pλ
TΨ = Ψ

Loss function = ||Pλ
TΨ−Ψ||2

Evolution of PDE solution done by two SDEs

Xn+1 = Xn + σ∆Bn

un+1 = un + (λΨθ − µT∇Ψθ)(Xn)∆t +∇Ψθ(Xn)∆Bn

Losssemigroup = EX0≈π0 [|uN −Ψθ(XN)|2]

Martingale Problem Formulation for BVP of PDEs

L = µ⊤∇+
1

2
Tr(σσ⊤∇∇⊤) = µ⊤∇+

1

2
Tr(A∇∇⊤) (15)

As a generator for SDE

dXt = µ(Xt)dt+σ(Xt)·dB,t (16)

Xt = x0 ∈ D,

Consider the Robin BVP

Lu + V (x, u,∇u) = f (x , u), x ∈ D ⊂ Rd , (17)

Γ(u) = γ⊤ · ∇u + cu = g , x ∈ ∂D,

where the unit vector

γ(x) =
1

2
A · n,

and a shorthand
v(x) = V (x, u(x),∇u(x))

Reflecting Diffusion and Skorohod problem

(Skorohod problem): A pair (X ref (t), L(t)) is a solution to the Skorohod
problem S(X ;D) if the following conditions are satisfied:

1. X ref is a path in D̄;

2. (local time) L(t) is a nondecreasing function which increases only when
X ref ∈ ∂D, namely,

L(t) =

∫ t

0

I∂D(X
ref (s))L(ds), (18)

3. The Skorohod equation holds:

S(X ;D) : X ref (t) = X (t)−
∫ t

0

γ(X ref (s))L(ds). (19)

3

1

2

4

5

Xt1

Xt2

in

in

in

out

out

out

ε-region

L(t) ≈
∫ t

0
IDϵ(Xs)ds

2ϵ
. (20)

Martingale for BVP of Elliptic PDEs

Denoting X (t)← X ref (t) (i .e.semi −Martingale) (21)

Using the Ito formula for the semi-martingale X (t)

du(X (t)) =
d∑

i=1

∂u

∂xi
(X (t))dXi (t) +

1

2

d∑
i=1

d∑
j=1

aij(X (t))
∂2u

∂xi∂xj
(X (t))dt

du(X (t)) = Lu(X (t))− γ⊺ · ∇u(u(Xt))L(dt) +
d∑

i=1

d∑
j=1

σij
∂u

∂xi
(X (t))dBi (t)

= f (X (t), u(X (t))− V (X (t), u(X (t)),∇u(X (t)))

− [g(X (t))− cu(X (t))] L(dt) +
d∑

i=1

d∑
j=1

σij
∂u

∂xi
(X (t))dBi (t) (Martingale)

A Martingale Mu
t is found to be

Mu
t
.
= u(Xt)− u(X0)−

∫ t

0

[f (Xs , u(Xs))− V (Xs , u(Xs),∇u(Xs))] ds

+

∫ t

0

[g(Xs)− cu(Xs)] L(ds) =

∫ t

0

d∑
i=1

d∑
j=1

σij
∂u

∂xi
(Xs)dBi (s),

Dirichlet BVP
For Dirichlet problem of (48) with a boundary condition

Γ[u] = u = g , x ∈ ∂D, (22)

the underlying diffusion process is the original diffusion process (48), but killed
at the boundary at the first exit time

τD = inf{t,Xt ∈ ∂D}, (23)

and it can be shown that in fact

τD = inf{t > 0, L(t) > 0}. (24)

Mu
t∧τD remains a Martingale, which will not involve the integral with respect to

local time L(t), i.e.

Mu
t∧τD = u(Xt∧τD)− u(X0)−

∫ t∧τD

0

[f (Xs , u(Xs))− V (Xs , u(Xs),∇u(Xs))]ds.

(25)
For the case of linear PDE, i.e. f (x , u) = f (x),V = 0, by taking expectation,
we get Feynman-Kac formula for Dirichlet problem

u(x) = E [g(XτD)]− E [

∫ τD

0

f (Xs)ds]. (26)

Local Solution by Feynman-kac formula for mixed Laplace BVP

∆u = 0 in Ω\Ω0, (27)

∂u

∂n
− cu = ϕ3(x) on Γ3 = ∪8

l=1El , (28)

∂u

∂n
= ϕ2(x) on Γ2 = ∂Ω\Γ3, (29)

u = ϕ1(x) on Γ1 = ∂Ω0, (30)

uMix(x) = E x

{∫ τΓ1

0

êc(t)ϕ2,3(Xt)dL(t)

}
+ E x(êc(τΓ1)ϕ1(XτΓ1

)). (31)

êc(t) := e
∫ t
0 c(Xs)dL(s). (32)

E0

E1

E2

E3

E4

E5

E6

E7

tumor

El

zl

Jl
Ul

electrode

skin u
JlΔu = 0

Figure: Potential on one electrode by Feynman-Kac formula with reflecting Brownian
Motion (Ding, Cai, et al, 2023, JCP)

Martingale Problem Formulation of BVP

▶ A probabilistic weak form of the Robin BVPs is that Mu
t is a Martingale.

▶ Classic weak form: For every test function
ϕ(x) ∈ C 2

∂D = {ϕ : ϕ ∈ C 2(D) ∩ C 1(D), (γ · ∇+ c)ϕ = 0}, we have∫
D

u(x)L∗ϕdx =

∫
D

[f (x , u(x))− V (x , u(x),∇u(x))]ϕ(x)dx

+

∫
∂D

ϕ(x)[µ⊺ · nu + g(x)− cu(x)]dsx ,

(33)

where

L∗ϕ =
1

2
Tr(∇∇⊺A)ϕ− div(µϕ). (34)

The equivalence between the probabilistic weak form and the classic weak form
are proven for the Schrodinger operator Lu = 1

2
∆u + qu for Neumann problem

(Hsu 1984) and Robin problem (V. G. Papanicolaou 1990).

DeepMertNet - A Martingale based deep neural network for BVP of PDEs
(Dirichlet Problem)

For simplicity of discussion, let us assume that s ≤ t ≤ τD , by the Martingale
property of Mt = Mu

t of (25), we have

E [Mt |Fs] = Ms , (35)

which implies for any measurable set A ∈ Fs ,

E [Mt |A] = Ms = E [Ms |A], (36)

thus,
E [(Mt −Ms) |A] = 0, (37)

i,e, ∫
A

(Mt −Ms)P(dω) = 0, (38)

Martingale Loss

For a given time interval [0,T], we define a partition

0 = t0 < t1 < · · · < ti < ti+1 < · · · < tN = T , (39)

and M-discrete realizations

Ω′ = {ωm}Mm=1 ⊂ Ω (40)

of the Ito process using Euler-Maruyama scheme with M-realizations of the
Brownian motions B(m)

i , 0 ≤ m ≤ M,

X(m)
i (ωm) ∼ X (ti , ωm), 0 ≤ i ≤ N,

where

X(m)
i+1 = X(m)

i + µ(X(m)
i)∆ti+σ(X

(m)
i)·∆B(m)

i , (41)

X(m)
0 = x0 (42)

where ∆ti = ti+1 − ti ,
∆B(m)

i = B(m)
i+1 − B(m)

i .

Martingale Loss for DeepMartNet (Dirichlet BVP)

The increment of the Mt over [ti , ti+k] can be approximated by

Mti+k −Mti =u(Xi+k)− u(Xi)−
∫ ti+k

ti

Lu(Xz)dz

.
=u(Xi+k)− u(Xi)−∆t

k∑
l=0

ωlLu(Xi+l)

=u(Xi+k)− u(Xi)−∆t
k∑

l=0

ωl(f (Xi+l , u(Xi+l))− v(Xi+l)). (43)

Adding back the exit time τD , note that

Mti+k∧τD −Mti∧τD = u(Xti+k∧τD)− u(Xti∧τD)−
∫ ti+k∧τD

ti∧τD

Lu(Xz)dz = 0

if both ti+k , ti ≥ τD .

DeepMartNet for Dirichlet BVP

As E [Mti+k −Mti] ≈ 0, for a randomly selected Ai ∈ Ω′ = Fti (mini-batches)

Lossmart(θ) =
1

N

N−1∑
i=0

N−1∑
i=0

(Mti+k∧τD −Mti∧τD)
2 (44)

=
1

N

N−1∑
i=0

I (ti ≤ τD)
|Ai |2

|Ai |∑
m=1

(
uθ(X

(m)
i+k)− uθ(X

(m)
i)−

∆t
k∑

l=0

ωl(f (X
(m)
i+l , uθ(X

(m)
i+l))− vθ(X

(m)
i+l))

)2

(45)

DeepMartNet solution− uθ∗(x), θ
∗ = argminLossmart(θ)

Martingale Loss for Robin BVP

Lossmart(θ) =
1

N

N−1∑
i=0

1

|Ai |2

|Ai |∑
m=1

(
uθ(X

(m)
i+k)− uθ(X

(m)
i)−

∆t
k∑

l=0

ωl(f (X
(m)
i+l , uθ(X

(m)
i+l))− vθ(X

(m)
i+l)) (46)

−
k∑

l=0

ωl(g(X
(m)
i+l)− cuθ(X

(m)
i+l))L(∆ti+l)

)2

, (47)

where
vθ(x) = V (x, uθ(x),∇uθ(x)).

DeepNetMart for Dirichlet eigenvalue problems

When the RHS f (x , u) = λu, we will have an eigenvalue problem

Lu + V (x, u,∇u) = λu, x ∈ D ⊂ Rd , (48)

Γ(u) = u = 0, x ∈ ∂D,

and the Martingale loss becomes

Lossmart(λ, θ) =
1

N

N−1∑
i=0

1

|Ai |2

|Ai |∑
m=1

(
uθ(X

(m)
i+k)− uθ(X

(m)
i)−

∆t
k∑

l=0

ωl(λuθ(X
(m)
i+l)− vθ(X

(m)
i+l))

)2

(49)

DeepMartNet eigenvalue solution− (λ∗, uθ∗(x))

(λ∗, θ∗) = argmin Lossmart(λ, θ)

Mini-Batchs in SGD and Martingale Property
▶ Martingale property implies that for any measurable set A ∈ Fs ,

E [Mt |A] = Ms , (50)

requires the equation holds for any random member of Fs , a native
mechanism for the mini-batch in the SGD. Martingale based NN provides
an ideal fit for deep learning of high-d PDEs.

Figure: DeepMartNet training and Martingale property

▶ (Size of mini-batch Ai in)
∫
Ai
(Mt −Ms)P(dω) = 0.

The size of mini-batch |Ai | should be large enough to give an accurate
sampling of the continuous distribution

M/20 ≤ |Ai | ≤ M/5

where M is the total number of paths used.

Beyond Feynman-Kac formula

▶ Traditional (Pre-ML) Feynman-Kac formula based Monte Carlo method
gives solution at one single point x0, where the paths originate

u(x0) = E [g(XτD)]− E [

∫ τD

0

f (Xs)ds]. (51)

or

uMix(x0) = E

{∫ τΓ1

0

êc(t)ϕ2,3(Xt)dL(t)

}
+ E(êc(τΓ1)ϕ1(XτΓ1

)). (52)

▶ DeepMartNet uses the same number of paths starting from one point x0
to produce global solution of the PDEs.

DeepMartNet solution− uθ∗(x), θ
∗ = argminLossmart(θ)

Lossmart(θ) =
1

N

N−1∑
i=0

1

|Ai |2

|Ai |∑
m=1

(
uθ(X

(m)
i+k)− uθ(X

(m)
i)−

∆t
k∑

l=0

ωl(f (X
(m)
i+l , uθ(X

(m)
i+l))− vθ(X

(m)
i+l))

)2

. (53)

where X(m)
0 = x0,m = 1, · · · ,M.

Numerical Results (Dirichlet BVP of the Poisson-Boltzmann Equation)

{
∆u(x) + cu(x) = f (x), x ∈ D

u(x) = g(x), x ∈ ∂D
(54)

where c < 0 with an high-d exact solution given

u(x) =
d∑

i=1

cos(ωxi), ω = 2. (55)

For Brownian motions W (j), j = 1, · · · ,M We define

Lossmart(θ) :=
1

N

N−1∑
i=0

1

|Ai |2

 |Ai |∑
j=1

uθ(W
(j)
ti+1

)− uθ(W
(j)
ti

) (56)

− 1

2

(
f (W

(j)
ti

)− cu(W
(j)
ti

)
)
I(ti ≤ τ (j)D)∆t

))2

, (57)

LossF-K = (uθ(x0)− u(x0))
2

u(x0) ≈
1

M

M∑
j=1

(
g
(
W (j)

τD

)
e

cτD
2 +

1

2

N−1∑
i=0

f
(
W

(j)
ti

)
e

cti
2 I
(
ti ≤ τ (j)D

)
∆t

)
,

PBE in a d=20 dim unit cube

Figure: D = [−1, 1]d , d = 20. The total number of paths is M = 100, 000, and
mini-batch size M0 = 1000; ∆t = 0.01. (Upper left): true and predicted value of u at
the diagonal of Rd ; (Upper right): true and predicted value of u at the first coordinate
axis of Rd . (Lower left): The loss L history; (lower right): The relative error L2 history

Effect of starting point x0 = (l , 0, · · · , 0), l = 0.1, 0.3, 0.7

Figure: A numercial result with data given as (55), where c = 1, ω = 2, L = 1 and
D = 20, Ω = [−1, 1]D . The total number of paths is M = 100, 000, and for each
epoch, we randomly choose M0 = 1000 from the paths; the time step of the paths is
∆t = 0.01. From up to down: x0 = 0.1, 0.3, 0.7; left:u(xe) where e = (1, 0 · · · , 0),
right: u(xe1) where e1 = d−1/2(1, 1 · · · , 1)

PBE in a d=100 dim unit ball

Figure: D = unit ball ∈ R100. The total number of paths is M = 100, 000, and
mini-batch size M0 = 1000; ∆t = 0.005. (Upper left): true and predicted value of u at
the diagonal of Rd ; (Upper right): true and predicted value of u at the first coordinate
axis of Rd . (Lower left): The loss L history; (lower right): The relative error L2 history

Eigenvalue Problem for Fokker-Planck equations

L′ψ = −∆ψ−∇·(ψ∇W)+cψ = −∆ψ −∇W · ∇ψ−∆Wψ+cψ = (λ0+c)ψ = λcψ,
(58)

where the eigenfunction for the λc = c- eigenvalue is simply

ψ(x) = e−W (x). (59)

Re-written as

Lψ =
1

2
∆ψ +

1

2
∇W · ∇ψ = −

(
1

2
∆W − 1

2
c + λ

)
ψ. (60)

Set generator for the SDE L with drift and diffusion as

µ =
1

2
∇W and σ = Id×d ,

And, the V is given by

V = −1

2
∆W . (61)

The Martingale loss for this case will be

loss1 =
1

∆t

1

N

N−1∑
i=0

1

|Ai |2

|Ai |∑
m=1

(
uθ(x

(m)
i + 1)− uθ(x

(m)
i) (62)

+(
1

2
∆W (x(m)

i)− 1

2
c + λ)uθ(x

(m)
i)∆t

)2
. (63)

Quadratic potential W (x) = ||x ||2, x ∈ Rd

a 5 Dimensional Fokker Planck

Figure: Eigenvalue c = 10, trapezoid k = 3, number of paths M = 9000, and number
of time steps N = 1350; relative eigenvalue error of 0.013, an L2RMS = 0.025 with
10000 epochs.

25 Dimensional Fokker Planck

Figure: Eigenvalue c = 50, trapezoid k = 3, number of paths M = 30000, and number
of time steps N = 1800; relative eigenvalue error of 0.0057, an L2RMS = 0.058 with
10000 epochs.

a 50 Dimensional Fokker Planck

Figure: Eigenvalue c = 100, trapezoid k = 3, number of paths M = 7500, and number
of time steps N = 900; relative eigenvalue error of 0.045, an L2RMS = 0.041 with 10000
epochs.

200 Dimensional Fokker Planck

Figure: Eigenvalue c = 400, trapezoid k = 3, number of paths M = 24000, and
number of time steps N = 1350; relative eigenvalue error of 0.0067, an L2RMS = 0.029
with 10000 epochs.

DeepMartNet for Optimal Stochastic Control

Feedback control: Consider SDE

dXt = µ(t,Xt , ut)dt+σ(t,Xt)·dBt , 0 ≤ t ≤ T (64)

▶ ut ∈ U , {Ft}t≥0-predictable processes taking values in U ⊂ Rm.

▶ The running cost
c : Ω× [0,T]× U → R, (65)

▶ A feedback control
c(ω, t, u) = c(Xt(ω), t, u), (66)

▶ Terminal cost
ξ(ω) = ξ(XT (ω)) (67)

ut ∈ U

Optimal stochastic control

The optimal control problem: find a control u∗

u∗ = arg inf
u∈U

J(u). (68)

where the total expected cost is then defined by

J(u) = Eu[ξ +

∫
[0,T]

c(Xt(ω), t, ut)dt]. (69)

Define the expected remaining cost for a given control u

J(ω, t, u) = Eu[ξ(XT (ω)) +

∫
[t,T]

c(Xt(ω), t, ut)dt|Ft] (70)

and a value process

Vt(ω) = inf
u∈U

J(ω, t, u), and E [V0] = inf
u∈U

J(u) = J(u∗), (71)

and a cost process

Mu
t (ω) =

∫
[0,t]

c(Xs(ω), s, us)ds + Vt(ω). (72)

Martingale Optimality Principle

The Martingale optimality principle is stated in the following theorem (Elliot,
2015).

Theorem
(Martingale optimality principle) Mu

t is a Pu-super-martingale. Mu
t is a

Pu-martingale if and only if control u = u∗ (the optimal control),and

E [V0] = Eu[M
u∗
0] = inf

u∈U
J(u).

BSDE for Value Process Vt(ω)

The value process Vt(ω) satisfies a backward SDE (BSDE){
dVt = −H(t,Xt ,Zt)dt + ZtdBt , 0 ≤ t < T

VT (ω) = ξ(XT (ω))
, (73)

where the HamiltanianH(t, x, z) = infu∈U f (t, x, z; u)

f (t, x, z; u) = c(x, t, u) + zα(t, x, u), α(t, x, u) = σ−1(t, x)µ(t, x, u).

From Pardoux-Peng BSDE theory

Vt(ω) = v(t,Xt(ω))

Zt(ω) = ∇v(t,Xt(ω))σ(t,Xt(ω))

where the value function v(t, x) satisfies a HJB equation{
0 = ∂v

∂t
(t, x) + Lv(t, x) + H(t, x,∇xvσ(t, x)), 0 ≤ t < T , x ∈ Rd

v(T , x) = ξ(x)
. (74)

DeepMartNet for Optimal Stochastic feedback Control
Approximate the optimal control by a neural network

ut(ω) = ut(X(ω)) ∼ uθ1(t,X(ω)), (75)

and the value function by another network

v(t, x) ∼ vθ2(t, x). (76)

l(θ1, θ2) = lctr (θ1) + lval(θ2)

where

lctr (θ1) =
1

N

N−1∑
i=0

(
E [Mu

ti+1
−Mu

ti]
)2

=
1

N

N−1∑
i=0

1

|Ai |2

|Ai |∑
m=1

(
c(Xti , ti , uθ1(ti ,X

(m)
i))∆ti + vθ2(ti+1,X

(m)
i+1)− vθ2(ti,X

(m)
i)
)2

(77)

lval(θ2) =
1

N

N−1∑
i=0

 1

|Ai |2

|Ai |∑
m=1

(
vθ2(ti+1,X

(m)
i+1)− vθ2(ti,X

(m)
i)+

H(ti ,X
(m)
i ,∇xvθ2(ti,X

(m)
i)σ(t,X(m)

i))∆ti

)2

(78)

+ β
1

M

M∑
m=1

(vθ2(T ,X
(m)
N)− ξ(X(m)

N))2.

Future work

1. Apply DeepMartNet for various PDEs problem HJB, Black-Scholes,
Fokker-Planck equation, Committor functions in TPT

2. ground state of many electron systems, non-Hermitian operator (electron
under magnetic field)

3. Stochastic controls, financial applications

