Martingale Based Deep Neural Networks for high-dimensional PDE and Optimal Stochastic Control Problems ${ }^{1}$

W. Cai
Southern Methodist University

Illinois Institute of Technology
October 31, 2023

[^0]
Outline of talk

- SDE based Deep Neural networks (DNNs) for PDEs
- Martingale problems for PDEs
- Martingale based DeepMartNet
- Numerical Results for PDEs
- DeepMartNet for Optimal Stochastic Controls
- Future work

Andrew He and Daniel Margolis

Review of SDE based Neural Networks for PDEs

Consider an Initial Value Problem (IVP) for Quasi-linear Problems

$$
\begin{equation*}
\partial_{t} u+\frac{1}{2} \operatorname{Tr}\left[\sigma \sigma^{T} \nabla \nabla u\right]+\mu \cdot \nabla u=\phi \tag{1}
\end{equation*}
$$

with the condition $u(T, x)=g(x)$. Problem is to find solution at $x, t=0$ $u(0, x)$, and the solution is related to FBSDE (Pardoux-Peng, 1990)

$$
\begin{align*}
d X_{t} & =\mu\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+\sigma\left(t, X_{t}, Y_{t}\right) d W_{t} \\
X_{0} & =\xi \tag{2}\\
d Y_{t} & =\phi\left(t, X_{t}, Y_{t}, Z_{t}\right) d t+Z_{t}^{T} \sigma\left(t, X_{t}, Y_{t}\right) d W_{t} \tag{3}\\
Y_{T} & =g\left(X_{T}\right)
\end{align*}
$$

Namely,

$$
\begin{equation*}
Y_{t}=u\left(t, X_{t}\right), \quad Z_{t}=\nabla u\left(t, X_{t}\right) \tag{4}
\end{equation*}
$$

Example I: Deep BSDE by J. Han, E, et al. (2016)

The Deep BSDE trains the network with input $X_{0}=\xi$ and output $Y_{0}=u(0, X)$. Apply the Euler-Maruyama scheme (EM) to the FBSDE (2) and (3), respectively,

$$
\begin{align*}
& X_{n+1} \approx X_{n}+\mu\left(t_{n}, X_{n}, Y_{n}, Z_{n}\right) \Delta t_{n}+\sigma\left(t_{n}, X_{n}, Y_{n}\right) \Delta W_{n} \tag{5}\\
& Y_{n+1} \approx Y_{n}+\phi\left(t_{n}, X_{n}, Y_{n}, Z_{n}\right) \Delta t_{n}+Z_{n}^{T} \sigma\left(t_{n}, X_{n}, Y_{n}\right) \Delta W_{n} \tag{6}
\end{align*}
$$

The missing Z_{n+1} will be approximated by a NN at t_{n+1}

$$
\begin{equation*}
\nabla u\left(t_{n}, X_{n} \mid \theta_{n}\right) \mapsto Z_{n}=\nabla u\left(t_{n}, X_{n}\right) \tag{7}
\end{equation*}
$$

Loss function: with Ensemble average approximation

$$
\begin{equation*}
\operatorname{Loss}_{b s d e}\left(Y_{0}, \theta\right)=\mathbb{E}\left\|u\left(T, X_{T}\right)-g\left(X_{T}\right)\right\|^{2} \tag{8}
\end{equation*}
$$

where

$$
u\left(T, X_{T}\right)=Y_{N}
$$

Trainable parameters are $\left\{Y_{0}, \theta_{n}, n=1, \cdots, N\right\}$.

Method 2: FBSNNs by M. Raissi

The FBSNNs trains the network with input pair $\left(t, X_{0}=\xi\right)$ and output a NN $u_{\theta}(t, x)$.
Loss function is based on the differnence of two discrete Markov chains:

- Markov Chain one

$$
\begin{align*}
X_{n+1} & =X_{n}+\mu\left(t_{n}, X_{n}, Y_{n}, Z_{n}\right) \Delta t_{n}+\sigma\left(t_{n}, X_{n}, Y_{n}\right) \Delta W_{n}, \\
Y_{n+1} & =u\left(t_{n+1}, X_{n+1}\right) \tag{9}\\
Z_{n+1} & =\nabla u\left(t_{n+1}, X_{n+1}\right) .
\end{align*}
$$

- Reference process by using the EM scheme

$$
\begin{equation*}
Y_{n+1}^{\star}=Y_{n}+\phi\left(t_{n}, X_{n}, Y_{n}, Z_{n}\right) \Delta t_{n}+Z_{n}^{T} \sigma\left(t_{n}, X_{n}, Y_{n}\right) \Delta W_{n} . \tag{10}
\end{equation*}
$$

- Loss function: a Monte Carlo approximation of

$$
\begin{equation*}
\text { Lossffbsnn }=\mathbb{E}\left[\sum_{n=1}^{N}\left\|Y_{n}-Y_{n}^{\star}\right\|^{2}+\left\|Y_{N}-g\left(X_{N}\right)\right\|^{2}+\left\|Z_{N}-\nabla g\left(X_{N}\right)\right\|^{2}\right] . \tag{11}
\end{equation*}
$$

- Markov chain one

$$
\begin{align*}
& X_{n+1}=X_{n}+\mu\left(t_{n}, X_{n}, Y_{n}, Z_{n}\right) \Delta t_{n}+\sigma\left(t_{n}, X_{n}, Y_{n}\right) \Delta W_{n}, \\
& Y_{n+1}=Y_{n}+\phi\left(t_{n}, X_{n}, Y_{n}, Z_{n}\right) \Delta t_{n}+Z_{n}^{T} \sigma\left(t_{n}, X_{n}, Y_{n}\right) \Delta W_{n}, \tag{12}\\
& Z_{n+1}=\nabla u\left(t_{n+1}, X_{n+1}\right)
\end{align*}
$$

- Markov chain two

$$
\begin{equation*}
Y_{n+1}^{\star}=u\left(t_{n+1}, X_{n+1}\right) \tag{13}
\end{equation*}
$$

- The loss function is a Monte Carlo approximation of

$$
\begin{equation*}
\mathbb{E}\left[\frac{1}{N} \sum_{n=1}^{N}\left\|Y_{n}-Y_{n}^{\star}\right\|^{2}+0.02\left\|Y_{N}^{\star}-g\left(X_{N}\right)\right\|^{2}+0.02\left\|Z_{N}-\nabla g\left(X_{N}\right)\right\|^{2}\right] \tag{14}
\end{equation*}
$$

Half-order convergence of $u_{\theta(x, t)}$ is observed due to the fact both processes defined are Markov chain.

1/2-order convergence for Extrapolation for better accuracy of Y_{0} With modifed verions of FBSNN we have the error plots for $N=12, N=48$, $N=192$ and $N=768$:

u_{θ}^{N} - the trained network with N number of time steps.
Modified FBSNN-1 Modified FBSNN-2

N	u_{θ}^{N}	$u_{\text {ex }}^{N}$	u_{θ}^{N}	$u_{\text {ex }}^{N}$
12	$2.91 \mathrm{e}-03$		$2.82 \mathrm{e}-03$	
48	$1.67 \mathrm{e}-03$	$\mathbf{4 . 2 9 e}-04$	$1.13 \mathrm{e}-03$	$5.57 \mathrm{e}-04$
192	$7.58 \mathrm{e}-04$	$\mathbf{1 . 5 3 e}-04$	$8.43 \mathrm{e}-04$	$5.55 \mathrm{e}-04$
768	$6.77 \mathrm{e}-04$	$5.97 \mathrm{e}-04$	$5.96 \mathrm{e}-04$	$3.49 \mathrm{e}-04$

Table: Relative error of Y_{0} from the network approximation and extrapolation.

Method III. fixed point of semi-group formulation for Eigenvalue Problem (Lu, etal, 2020)

$$
\mathcal{L} \Psi \doteq\left(\frac{1}{2} \operatorname{Tr}\left[\sigma \sigma^{T} \nabla \nabla\right]+\mu \cdot \nabla\right) \Psi=\lambda \Psi
$$

Reformulated as backward parabolic PDE

$$
\begin{gathered}
\partial_{t} u(t, x)+\mathcal{L} u(t, x)-\lambda u(t, x)=0 \\
u(T, x)=\Psi(x) \approx \Psi_{\theta}(x),
\end{gathered}
$$

So

$$
u(T-t, \cdot)=P_{t}^{\lambda} \Psi, \quad P_{T}^{\lambda} \Psi=\Psi
$$

Loss function $=\left\|P_{T}^{\lambda} \Psi-\Psi\right\|^{2}$
Evolution of PDE solution done by two SDEs

$$
\begin{gathered}
X_{n+1}=X_{n}+\sigma \Delta B_{n} \\
u_{n+1}=u_{n}+\left(\lambda \Psi_{\theta}-\mu^{T} \nabla \Psi_{\theta}\right)\left(X_{n}\right) \Delta t+\nabla \Psi_{\theta}\left(X_{n}\right) \Delta B_{n} \\
\text { Loss }_{\text {semigroup }}=E_{X_{0} \approx \pi_{0}}\left[\left|u_{N}-\Psi_{\theta}\left(X_{N}\right)\right|^{2}\right]
\end{gathered}
$$

Martingale Problem Formulation for BVP of PDEs

$$
\begin{equation*}
\mathcal{L}=\mu^{\top} \nabla+\frac{1}{2} \operatorname{Tr}\left(\sigma \sigma^{\top} \nabla \nabla^{\top}\right)=\mu^{\top} \nabla+\frac{1}{2} \operatorname{Tr}\left(A \nabla \nabla^{\top}\right) \tag{15}
\end{equation*}
$$

As a generator for SDE

$$
\begin{align*}
d \mathbf{X}_{t} & =\mu\left(\mathbf{X}_{t}\right) d t+\sigma\left(\mathbf{X}_{t}\right) \cdot d \mathbf{B}, t \tag{16}\\
\mathbf{X}_{t} & =\mathbf{x}_{0} \in D
\end{align*}
$$

Consider the Robin BVP

$$
\begin{align*}
\mathcal{L} u+V(\mathbf{x}, u, \nabla u) & =f(x, u), \quad \mathbf{x} \in D \subset R^{d}, \tag{17}\\
\Gamma(u)=\gamma^{\top} \cdot \nabla u+c u & =g, \quad \mathbf{x} \in \partial D,
\end{align*}
$$

where the unit vector

$$
\gamma(x)=\frac{1}{2} A \cdot n,
$$

and a shorthand

$$
v(\mathbf{x})=V(\mathbf{x}, u(\mathbf{x}), \nabla u(\mathbf{x}))
$$

Reflecting Diffusion and Skorohod problem

(Skorohod problem): A pair $\left(X^{r e f}(t), L(t)\right)$ is a solution to the Skorohod problem $S(X ; D)$ if the following conditions are satisfied:

1. $X^{r e f}$ is a path in \bar{D};
2. (local time) $L(t)$ is a nondecreasing function which increases only when $X^{\text {ref }} \in \partial D$, namely,

$$
\begin{equation*}
L(t)=\int_{0}^{t} l_{\partial D}\left(X^{r e f}(s)\right) L(d s) \tag{18}
\end{equation*}
$$

3. The Skorohod equation holds:

$$
\begin{equation*}
S(X ; D): \quad X^{r e f}(t)=X(t)-\int_{0}^{t} \gamma\left(X^{r e f}(s)\right) L(d s) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
L(t) \approx \frac{\int_{0}^{t} I_{D_{\epsilon}}\left(X_{s}\right) d s}{2 \epsilon} \tag{20}
\end{equation*}
$$

Martingale for BVP of Elliptic PDEs

$$
\begin{equation*}
\text { Denoting } \quad X(t) \leftarrow X^{r e f}(t) \quad \text { (i.e.semi }- \text { Martingale) } \tag{21}
\end{equation*}
$$

Using the Ito formula for the semi-martingale $X(t)$

$$
\begin{aligned}
& d u(X(t))=\sum_{i=1}^{d} \frac{\partial u}{\partial x_{i}}(X(t)) d X_{i}(t)+\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} a_{i j}(X(t)) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(X(t)) d t \\
& d u(X(t))=\mathcal{L} u(X(t))-\gamma^{\top} \cdot \nabla u\left(u\left(X_{t}\right)\right) L(d t)+\sum_{i=1}^{d} \sum_{j=1}^{d} \sigma_{i j} \frac{\partial u}{\partial x_{i}}(X(t)) d B_{i}(t) \\
&=f(X(t), u(X(t))-V(X(t), u(X(t)), \nabla u(X(t))) \\
&-[g(X(t))-c u(X(t))] L(d t)+\sum_{i=1}^{d} \sum_{j=1}^{d} \sigma_{i j} \frac{\partial u}{\partial x_{i}}(X(t)) d B_{i}(t) \quad \text { (Martingale) }
\end{aligned}
$$

A Martingale M_{t}^{u} is found to be

$$
\begin{aligned}
M_{t}^{u} & \doteq u\left(X_{t}\right)-u\left(X_{0}\right)-\int_{0}^{t}\left[f\left(X_{s}, u\left(X_{s}\right)\right)-V\left(X_{s}, u\left(X_{s}\right), \nabla u\left(X_{s}\right)\right)\right] d s \\
& +\int_{0}^{t}\left[g\left(X_{s}\right)-c u\left(X_{s}\right)\right] L(d s)=\int_{0}^{t} \sum_{i=1}^{d} \sum_{j=1}^{d} \sigma_{i j} \frac{\partial u}{\partial x_{i}}\left(X_{s}\right) d B_{i}(s)
\end{aligned}
$$

Dirichlet BVP

For Dirichlet problem of (48) with a boundary condition

$$
\begin{equation*}
\Gamma[u]=u=g, x \in \partial D \tag{22}
\end{equation*}
$$

the underlying diffusion process is the original diffusion process (48), but killed at the boundary at the first exit time

$$
\begin{equation*}
\tau_{D}=\inf \left\{t, X_{t} \in \partial D\right\} \tag{23}
\end{equation*}
$$

and it can be shown that in fact

$$
\begin{equation*}
\tau_{D}=\inf \{t>0, L(t)>0\} \tag{24}
\end{equation*}
$$

$M_{t \wedge \tau_{D}}^{u}$ remains a Martingale, which will not involve the integral with respect to local time $\mathrm{L}(\mathrm{t})$, i.e.

$$
\begin{equation*}
M_{t \wedge \tau_{D}}^{u}=u\left(X_{t \wedge \tau_{D}}\right)-u\left(X_{0}\right)-\int_{0}^{t \wedge \tau_{D}}\left[f\left(X_{s}, u\left(X_{s}\right)\right)-V\left(X_{s}, u\left(X_{s}\right), \nabla u\left(X_{s}\right)\right)\right] d s \tag{25}
\end{equation*}
$$

For the case of linear PDE, i.e. $f(x, u)=f(x), V=0$, by taking expectation, we get Feynman-Kac formula for Dirichlet problem

$$
\begin{equation*}
u(x)=E\left[g\left(X_{\tau_{D}}\right)\right]-E\left[\int_{0}^{\tau_{D}} f\left(X_{s}\right) d s\right] \tag{26}
\end{equation*}
$$

Local Solution by Feynman-kac formula for mixed Laplace BVP

$$
\begin{align*}
& \Delta u=0 \quad \text { in } \Omega \backslash \Omega_{0}, \tag{27}\\
& \frac{\partial u}{\partial n}-c u=\phi_{3}(x) \quad \text { on } \Gamma_{3}=\cup_{l=1}^{8} E_{l} \text {, } \tag{28}\\
& \frac{\partial u}{\partial n}=\phi_{2}(x) \quad \text { on } \Gamma_{2}=\partial \Omega \backslash \Gamma_{3}, \tag{29}\\
& u=\phi_{1}(x) \text { on } \Gamma_{1}=\partial \Omega_{0}, \tag{30}\\
& u_{\text {Mix }}(x)=E^{x}\left\{\int_{0}^{\tau_{\Gamma_{1}}} \hat{e}_{c}(t) \phi_{2,3}\left(X_{t}\right) d L(t)\right\}+E^{x}\left(\hat{e}_{c}\left(\tau_{\Gamma_{1}}\right) \phi_{1}\left(X_{\tau_{\Gamma_{1}}}\right)\right) \text {. } \tag{31}\\
& \hat{e}_{c}(t):=e^{\int_{0}^{t} c\left(X_{s}\right) d L(s)} . \tag{32}
\end{align*}
$$

Figure: Potential on one electrode by Feynman-Kac formula with reflecting Brownian Motion (Ding, Cai, et al, 2023, JCP)

Martingale Problem Formulation of BVP

- A probabilistic weak form of the Robin BVPs is that M_{t}^{u} is a Martingale.
- Classic weak form: For every test function $\phi(x) \in C_{\partial D}^{2}=\left\{\phi: \phi \in C^{2}(D) \cap C^{1}(\bar{D}),(\gamma \cdot \nabla+c) \phi=0\right\}$, we have

$$
\begin{align*}
\int_{D} u(x) \mathcal{L}^{*} \phi d x & =\int_{D}[f(x, u(x))-V(x, u(x), \nabla u(x))] \phi(x) d x \\
& +\int_{\partial D} \phi(x)\left[\mu^{\top} \cdot n u+g(x)-c u(x)\right] d s_{x} \tag{33}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{L}^{*} \phi=\frac{1}{2} \operatorname{Tr}\left(\nabla \nabla^{\top} A\right) \phi-\operatorname{div}(\mu \phi) . \tag{34}
\end{equation*}
$$

The equivalence between the probabilistic weak form and the classic weak form are proven for the Schrodinger operator $\mathcal{L} u=\frac{1}{2} \Delta u+q u$ for Neumann problem (Hsu 1984) and Robin problem (V. G. Papanicolaou 1990).

DeepMertNet - A Martingale based deep neural network for BVP of PDEs (Dirichlet Problem)

For simplicity of discussion, let us assume that $s \leq t \leq \tau_{D}$, by the Martingale property of $M_{t}=M_{t}^{u}$ of (25), we have

$$
\begin{equation*}
E\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s} \tag{35}
\end{equation*}
$$

which implies for any measurable set $A \in \mathcal{F}_{s}$,

$$
\begin{equation*}
E\left[M_{t} \mid A\right]=M_{s}=E\left[M_{s} \mid A\right] \tag{36}
\end{equation*}
$$

thus,

$$
\begin{equation*}
E\left[\left(M_{t}-M_{s}\right) \mid A\right]=0 \tag{37}
\end{equation*}
$$

i,e,

$$
\begin{equation*}
\int_{A}\left(M_{t}-M_{s}\right) P(d \omega)=0 \tag{38}
\end{equation*}
$$

Martingale Loss

For a given time interval $[0, T]$, we define a partition

$$
\begin{equation*}
0=t_{0}<t_{1}<\cdots<t_{i}<t_{i+1}<\cdots<t_{N}=T, \tag{39}
\end{equation*}
$$

and M-discrete realizations

$$
\begin{equation*}
\Omega^{\prime}=\left\{\omega_{m}\right\}_{m=1}^{M} \subset \Omega \tag{40}
\end{equation*}
$$

of the Ito process using Euler-Maruyama scheme with M-realizations of the Brownian motions $\mathbf{B}_{i}^{(m)}, 0 \leq m \leq M$,

$$
\mathbf{x}_{i}^{(m)}\left(\omega_{m}\right) \sim X\left(t_{i}, \omega_{m}\right), 0 \leq i \leq N,
$$

where

$$
\begin{align*}
& \mathbf{X}_{i+1}^{(m)}=\mathbf{X}_{i}^{(m)}+\mu\left(\mathbf{X}_{i}^{(m)}\right) \Delta t_{i}+\sigma\left(\mathbf{X}_{i}^{(\mathbf{m})}\right) \cdot \Delta \mathbf{B}_{i}^{(m)}, \tag{41}\\
& \mathbf{X}_{0}^{(m)}=\mathbf{x}_{0} \tag{42}
\end{align*}
$$

where $\Delta t_{i}=t_{i+1}-t_{i}$,

$$
\Delta \mathbf{B}_{i}^{(m)}=\mathbf{B}_{i+1}^{(m)}-\mathbf{B}_{i}^{(m)} .
$$

Martingale Loss for DeepMartNet (Dirichlet BVP)

The increment of the M_{t} over $\left[t_{i}, t_{i+k}\right]$ can be approximated by

$$
\begin{align*}
M_{t_{i+k}}-M_{t_{i}} & =u\left(\mathbf{X}_{i+k}\right)-u\left(\mathbf{X}_{i}\right)-\int_{t_{i}}^{t_{i+k}} \mathcal{L} u\left(\mathbf{X}_{z}\right) d z \\
& \doteq u\left(\mathbf{X}_{i+k}\right)-u\left(\mathbf{X}_{i}\right)-\Delta t \sum_{l=0}^{k} \omega l \mathcal{L} u\left(\mathbf{X}_{i+l}\right) \\
& =u\left(\mathbf{X}_{i+k}\right)-u\left(\mathbf{X}_{i}\right)-\Delta t \sum_{l=0}^{k} \omega_{l}\left(f\left(\mathbf{X}_{i+l}, u\left(\mathbf{X}_{i+l}\right)\right)-v\left(\mathbf{X}_{i+l}\right)\right) . \tag{43}
\end{align*}
$$

Adding back the exit time τ_{D}, note that

$$
M_{t_{i+k} \wedge \tau_{D}}-M_{t_{i} \wedge \tau_{D}}=u\left(\mathbf{X}_{t_{i+k} \wedge \tau_{D}}\right)-u\left(\mathbf{X}_{t_{i} \wedge \tau_{D}}\right)-\int_{t_{i} \wedge \tau_{D}}^{t_{i+k} \wedge \tau_{D}} \mathcal{L} u\left(\mathbf{X}_{z}\right) d z=0
$$

if both $t_{i+k}, t_{i} \geq \tau_{D}$.

DeepMartNet for Dirichlet BVP

As $E\left[M_{t_{i+k}}-M_{t_{i}}\right] \approx 0$, for a randomly selected $A_{i} \in \Omega^{\prime}=\mathcal{F}_{t_{i}}$ (mini-batches)

$$
\begin{align*}
\operatorname{Loss}_{\text {mart }}(\theta) & =\frac{1}{N} \sum_{i=0}^{N-1} \sum_{i=0}^{N-1}\left(M_{t_{i+k} \wedge \tau_{D}}-M_{t_{i} \wedge \tau_{D}}\right)^{2} \tag{44}\\
& =\frac{1}{N} \sum_{i=0}^{N-1} \frac{I\left(t_{i} \leq \tau_{D}\right)}{\left|A_{i}\right|^{2}} \sum_{m=1}^{\left|A_{i}\right|}\left(u_{\theta}\left(\mathbf{X}_{i+k}^{(m)}\right)-u_{\theta}\left(\mathbf{X}_{i}^{(m)}\right)-\right. \\
& \left.\Delta t \sum_{l=0}^{k} \omega_{l}\left(f\left(\mathbf{X}_{i+l}^{(m)}, u_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)\right)-v_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)\right)\right)^{2} \tag{45}
\end{align*}
$$

DeepMartNet solution $-u_{\theta^{*}}(x), \theta^{*}=\operatorname{argminLoss}_{m a r t}(\theta)$

Martingale Loss for Robin BVP

$$
\begin{align*}
& \operatorname{Loss}_{\text {mart }}(\theta)=\frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{\left|A_{i}\right|^{2}} \sum_{m=1}^{\left|A_{i}\right|}\left(u_{\theta}\left(\mathbf{X}_{i+k}^{(m)}\right)-u_{\theta}\left(\mathbf{X}_{i}^{(m)}\right)-\right. \\
& \Delta t \sum_{l=0}^{k} \omega_{l}\left(f\left(\mathbf{X}_{i+1}^{(m)}, u_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)\right)-v_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)\right) \tag{46}\\
& \left.\quad-\sum_{l=0}^{k} \omega_{l}\left(g\left(\mathbf{X}_{i+1}^{(m)}\right)-c u_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)\right) L\left(\Delta t_{i+1}\right)\right)^{2}, \tag{47}
\end{align*}
$$

where

$$
v_{\theta}(\mathbf{x})=V\left(\mathbf{x}, u_{\theta}(\mathbf{x}), \nabla u_{\theta}(\mathbf{x})\right)
$$

DeepNetMart for Dirichlet eigenvalue problems

When the RHS $f(x, u)=\lambda u$, we will have an eigenvalue problem

$$
\begin{gather*}
\mathcal{L} u+V(\mathbf{x}, u, \nabla u)=\lambda u, \quad \mathbf{x} \in D \subset R^{d}, \tag{48}\\
\Gamma(u)=u=0, \quad \mathbf{x} \in \partial D,
\end{gather*}
$$

and the Martingale loss becomes

$$
\begin{array}{r}
\operatorname{Loss}_{\text {mart }}(\lambda, \theta)=\frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{\left|A_{i}\right|^{2}} \sum_{m=1}^{\left|A_{i}\right|}\left(u_{\theta}\left(\mathbf{X}_{i+k}^{(m)}\right)-u_{\theta}\left(\mathbf{X}_{i}^{(m)}\right)-\right. \\
\left.\Delta t \sum_{l=0}^{k} \omega_{l}\left(\lambda u_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)-v_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)\right)\right)^{2} \tag{49}
\end{array}
$$

DeepMartNet eigenvalue solution $-\left(\lambda^{*}, u_{\theta^{*}}(x)\right)$

$$
\left(\lambda^{*}, \theta^{*}\right)=\operatorname{argmin} \quad \operatorname{Loss}_{\text {mart }}(\lambda, \theta)
$$

Mini-Batchs in SGD and Martingale Property

- Martingale property implies that for any measurable set $A \in \mathcal{F}_{s}$,

$$
\begin{equation*}
E\left[M_{t} \mid A\right]=M_{s}, \tag{50}
\end{equation*}
$$

requires the equation holds for any random member of \mathcal{F}_{s}, a native mechanism for the mini-batch in the SGD. Martingale based NN provides an ideal fit for deep learning of high-d PDEs.

Figure: DeepMartNet training and Martingale property

- (Size of mini-batch A_{i} in) $\quad \int_{A_{i}}\left(M_{t}-M_{s}\right) P(d \omega)=0$.

The size of mini-batch $\left|A_{i}\right|$ should be large enough to give an accurate sampling of the continuous distribution

$$
M / 20 \leq\left|A_{i}\right| \leq M / 5
$$

where M is the total number of paths used.

Beyond Feynman-Kac formula

- Traditional (Pre-ML) Feynman-Kac formula based Monte Carlo method gives solution at one single point x_{0}, where the paths originate

$$
\begin{equation*}
u\left(x_{0}\right)=E\left[g\left(X_{\tau_{D}}\right)\right]-E\left[\int_{0}^{\tau_{D}} f\left(X_{s}\right) d s\right] \tag{51}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{M i x}\left(x_{0}\right)=E\left\{\int_{0}^{\tau_{\Gamma_{1}}} \hat{e}_{c}(t) \phi_{2,3}\left(X_{t}\right) d L(t)\right\}+E\left(\hat{e}_{c}\left(\tau_{\Gamma_{1}}\right) \phi_{1}\left(X_{\tau_{\Gamma_{1}}}\right)\right) \tag{52}
\end{equation*}
$$

- DeepMartNet uses the same number of paths starting from one point x_{0} to produce global solution of the PDEs.

$$
\text { DeepMartNet solution }-u_{\theta^{*}}(x), \theta^{*}=\operatorname{argminLoss}_{m a r t}(\theta)
$$

$$
\begin{align*}
\operatorname{Loss}_{m a r t}(\theta)=\frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{\left|A_{i}\right|^{2}} \sum_{m=1}^{\left|A_{i}\right|}\left(u_{\theta}\left(\mathbf{X}_{i+k}^{(m)}\right)-u_{\theta}\left(\mathbf{X}_{i}^{(m)}\right)-\right. \\
\left.\Delta t \sum_{l=0}^{k} \omega_{l}\left(f\left(\mathbf{X}_{i+l}^{(m)}, u_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)\right)-v_{\theta}\left(\mathbf{X}_{i+l}^{(m)}\right)\right)\right)^{2} \tag{53}
\end{align*}
$$

where $\mathbf{X}_{0}^{(m)}=x_{0}, m=1, \cdots, M$.

Numerical Results (Dirichlet BVP of the Poisson-Boltzmann Equation)

$$
\begin{cases}\Delta u(x)+c u(x)=f(x), & x \in D \tag{54}\\ u(x)=g(x), & x \in \partial D\end{cases}
$$

where $c<0$ with an high-d exact solution given

$$
\begin{equation*}
u(x)=\sum_{i=1}^{d} \cos \left(\omega x_{i}\right), \quad \omega=2 \tag{55}
\end{equation*}
$$

For Brownian motions $W^{(j)}, j=1, \cdots, M$ We define

$$
\begin{gather*}
\operatorname{Loss}^{\text {mart }}(\theta):=\frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{\left|A_{i}\right|^{2}}\left(\sum_{j=1}^{\left|A_{i}\right|} u_{\theta}\left(W_{t_{i+1}}^{(j)}\right)-u_{\theta}\left(W_{t_{i}}^{(j)}\right)\right. \tag{56}\\
\left.\left.-\frac{1}{2}\left(f\left(W_{t_{i}}^{(j)}\right)-c u\left(W_{t_{i}}^{(j)}\right)\right) \mathbb{I}\left(t_{i} \leq \tau_{D}^{(j)}\right) \Delta t\right)\right)^{2} \tag{57}\\
\left.\left.u\left(x_{0}\right) \approx \frac{1}{M} \sum_{j=1}^{M}\left(g\left(W_{\tau_{D}}^{(j)}\right) \mathrm{e}^{\frac{c \tau_{D}}{2}}+\frac{1}{2} \sum_{i=0}^{N-1} f\left(W_{t_{i}}^{(j)}\right) \mathrm{e}^{\frac{c t_{i}}{2}} \mathbb{I}\left(x_{0}\right)-u\left(x_{0}\right)\right)^{2} \leq \tau_{D}^{(j)}\right) \Delta t\right)
\end{gather*}
$$

PBE in a $d=20$ dim unit cube

Figure: $D=[-1,1]^{d}, d=20$. The total number of paths is $M=100,000$, and mini-batch size $M_{0}=1000 ; \Delta t=0.01$. (Upper left): true and predicted value of u at the diagonal of \mathbb{R}^{d}; (Upper right): true and predicted value of u at the first coordinate axis of \mathbb{R}^{d}. (Lower left): The loss L history; (lower right): The relative error L^{2} history

Effect of starting point $x_{0}=(I, 0, \cdots, 0), I=0.1,0.3,0.7$

PBE in a $d=100$ dim unit ball

Figure: $D=$ unit ball $\in R^{1} 00$. The total number of paths is $M=100,000$, and mini-batch size $M_{0}=1000 ; \Delta t=0.005$. (Upper left): true and predicted value of u at the diagonal of \mathbb{R}^{d}; (Upper right): true and predicted value of u at the first coordinate axis of \mathbb{R}^{d}. (Lower left): The loss L history; (lower right): The relative error L^{2} history

Eigenvalue Problem for Fokker-Planck equations
$\mathcal{L}^{\prime} \psi=-\Delta \psi-\nabla \cdot(\psi \nabla W)+c \psi=-\Delta \psi-\nabla W \cdot \nabla \psi-\Delta W \psi+c \psi=\left(\lambda_{0}+c\right) \psi=\lambda_{c} \psi$,
where the eigenfunction for the $\lambda_{c}=c$ - eigenvalue is simply

$$
\begin{equation*}
\psi(x)=e^{-W(x)} \tag{58}
\end{equation*}
$$

Re-written as

$$
\begin{equation*}
\mathcal{L} \psi=\frac{1}{2} \Delta \psi+\frac{1}{2} \nabla W \cdot \nabla \psi=-\left(\frac{1}{2} \Delta W-\frac{1}{2} c+\lambda\right) \psi \tag{60}
\end{equation*}
$$

Set generator for the SDE \mathcal{L} with drift and diffusion as

$$
\mu=\frac{1}{2} \nabla W \quad \text { and } \quad \sigma=I_{d \times d},
$$

And, the V is given by

$$
\begin{equation*}
V=-\frac{1}{2} \Delta W \tag{61}
\end{equation*}
$$

The Martingale loss for this case will be

$$
\begin{align*}
\text { loss }_{1} & =\frac{1}{\Delta t} \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{\left|A_{i}\right|^{2}} \sum_{m=1}^{\left|A_{i}\right|}\left(u_{\theta}\left(\mathbf{x}_{\mathbf{i}+1}^{(m)}\right)-u_{\theta}\left(\mathbf{x}_{\mathbf{i}}^{(m)}\right)\right. \tag{62}\\
& \left.+\left(\frac{1}{2} \Delta W\left(\mathbf{x}_{\mathbf{i}}^{(m)}\right)-\frac{1}{2} c+\lambda\right) u_{\theta}\left(\mathbf{x}_{\mathbf{i}}^{(m)}\right) \Delta t\right)^{2} \tag{63}
\end{align*}
$$

Quadratic potential $W(x)=\|x\|^{2}, x \in R^{d}$
a 5 Dimensional Fokker Planck

Figure: Eigenvalue $c=10$, trapezoid $k=3$, number of paths $M=9000$, and number of time steps $N=1350$; relative eigenvalue error of 0.013 , an $L_{R M S}^{2}=0.025$ with 10000 epochs.

25 Dimensional Fokker Planck

Figure: Eigenvalue $c=50$, trapezoid $k=3$, number of paths $M=30000$, and number of time steps $N=1800$; relative eigenvalue error of 0.0057 , an $L_{R M S}^{2}=0.058$ with 10000 epochs.

a 50 Dimensional Fokker Planck

Figure: Eigenvalue $c=100$, trapezoid $k=3$, number of paths $M=7500$, and number of time steps $N=900$; relative eigenvalue error of 0.045 , an $L_{R M S}^{2}=0.041$ with 10000 epochs.

200 Dimensional Fokker Planck

Figure: Eigenvalue $c=400$, trapezoid $k=3$, number of paths $M=24000$, and number of time steps $N=1350$; relative eigenvalue error of 0.0067 , an $L_{R M S}^{2}=0.029$ with 10000 epochs.

DeepMartNet for Optimal Stochastic Control

Feedback control: Consider SDE

$$
\begin{equation*}
d \mathbf{X}_{t}=\mu\left(t, \mathbf{X}_{t}, u_{t}\right) d t+\sigma\left(t, \mathbf{X}_{t}\right) \cdot d \mathbf{B}_{t}, \quad 0 \leq t \leq T \tag{64}
\end{equation*}
$$

- $u_{t} \in \mathcal{U},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$-predictable processes taking values in $U \subset R^{m}$.
- The running cost

$$
\begin{equation*}
c: \Omega \times[0, T] \times U \rightarrow R, \tag{65}
\end{equation*}
$$

- A feedback control

$$
\begin{equation*}
c(\omega, t, u)=c\left(\mathbf{X}_{t}(\omega), t, u\right), \tag{66}
\end{equation*}
$$

- Terminal cost

$$
\begin{equation*}
\xi(\omega)=\xi\left(\mathbf{X}_{T}(\omega)\right) \tag{67}
\end{equation*}
$$

$u_{t} \in \mathcal{U}$

Optimal stochastic control

The optimal control problem: find a control u^{*}

$$
\begin{equation*}
u^{*}=\arg \inf _{u \in \mathcal{U}} J(u) \tag{68}
\end{equation*}
$$

where the total expected cost is then defined by

$$
\begin{equation*}
J(u)=E_{u}\left[\xi+\int_{[0, T]} c\left(\mathbf{X}_{t}(\omega), t, u_{t}\right) d t\right] \tag{69}
\end{equation*}
$$

Define the expected remaining cost for a given control u

$$
\begin{equation*}
J(\omega, t, u)=E_{u}\left[\xi\left(\mathbf{X}_{T}(\omega)\right)+\int_{[t, T]} c\left(\mathbf{X}_{t}(\omega), t, u_{t}\right) d t \mid \mathcal{F}_{t}\right] \tag{70}
\end{equation*}
$$

and a value process

$$
\begin{equation*}
V_{t}(\omega)=\inf _{u \in \mathcal{U}} J(\omega, t, u), \text { and } E\left[V_{0}\right]=\inf _{u \in \mathcal{U}} J(u)=J\left(u^{*}\right) \tag{71}
\end{equation*}
$$

and a cost process

$$
\begin{equation*}
M_{t}^{u}(\omega)=\int_{[0, t]} c\left(\mathbf{X}_{s}(\omega), s, u_{s}\right) d s+V_{t}(\omega) \tag{72}
\end{equation*}
$$

Martingale Optimality Principle

The Martingale optimality principle is stated in the following theorem (Elliot, 2015).

Theorem
(Martingale optimality principle) M_{t}^{u} is a P^{u}-super-martingale. M_{t}^{u} is a P^{u}-martingale if and only if control $u=u^{*}$ (the optimal control), and

$$
E\left[V_{0}\right]=E_{u}\left[M_{0}^{u^{*}}\right]=\inf _{u \in \mathcal{U}} J(u) .
$$

BSDE for Value Process $V_{t}(\omega)$

The value process $V_{t}(\omega)$ satisfies a backward SDE (BSDE)

$$
\left\{\begin{array}{c}
d V_{t}=-H\left(t, \mathbf{X}_{t}, \mathbf{Z}_{t}\right) d t+\mathbf{Z}_{t} d B_{t}, 0 \leq t<T \tag{73}\\
V_{T}(\omega)=\xi\left(\mathbf{X}_{T}(\omega)\right)
\end{array}\right.
$$

where the $\operatorname{Hamiltanian} H(t, \mathbf{x}, \mathbf{z})=\inf _{u \in \mathcal{U}} f(t, \mathbf{x}, \mathbf{z} ; u)$

$$
f(t, \mathbf{x}, \mathbf{z} ; u)=c(\mathbf{x}, t, u)+\mathbf{z} \alpha(t, \mathbf{x}, u), \quad \alpha(t, \mathbf{x}, u)=\sigma^{-1}(t, \mathbf{x}) \mu(t, \mathbf{x}, u)
$$

From Pardoux-Peng BSDE theory

$$
\begin{aligned}
& V_{t}(\omega)=v\left(t, \mathbf{X}_{t}(\omega)\right) \\
& Z_{t}(\omega)=\nabla v\left(t, \mathbf{X}_{t}(\omega)\right) \sigma\left(t, \mathbf{X}_{t}(\omega)\right)
\end{aligned}
$$

where the value function $v(t, \mathbf{x})$ satisfies a HJB equation

$$
\left\{\begin{array}{c}
0=\frac{\partial v}{\partial t}(t, \mathbf{x})+\mathcal{L} v(t, \mathbf{x})+ \tag{74}\\
H\left(t, \mathbf{x}, \nabla_{x} v \sigma(t, \mathbf{x})\right), \quad 0 \leq t<T, \mathbf{x} \in R^{d} \\
v(T, \mathbf{x})=\xi(\mathbf{x})
\end{array}\right.
$$

DeepMartNet for Optimal Stochastic feedback Control

Approximate the optimal control by a neural network

$$
\begin{equation*}
u_{t}(\omega)=u_{t}(\mathbf{X}(\omega)) \sim u_{\theta_{1}}(t, \mathbf{X}(\omega)) \tag{75}
\end{equation*}
$$

and the value function by another network

$$
\begin{gather*}
v(t, \mathbf{x}) \sim v_{\theta_{2}}(t, \mathbf{x}) \tag{76}\\
I\left(\theta_{1}, \theta_{2}\right)=I_{c t r}\left(\theta_{1}\right)+I_{\text {val }}\left(\theta_{2}\right)
\end{gather*}
$$

where

$$
\left.\left.\begin{array}{l}
I_{c t r}\left(\theta_{1}\right)=\frac{1}{N} \sum_{i=0}^{N-1}\left(E\left[M_{t_{i+1}}^{u}-M_{t_{i}}^{u}\right]\right)^{2} \\
\\
=\frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{\left|A_{i}\right|^{2}} \sum_{m=1}^{\left|A_{i}\right|}\left(c\left(X_{t_{i}}, t_{i}, u_{\theta_{1}}\left(t_{i}, \mathbf{X}_{i}^{(m)}\right)\right) \Delta t_{i}+v_{\theta_{2}}\left(t_{i+1}, \mathbf{X}_{i+1}^{(m)}\right)-v_{\theta_{2}}\left(t_{i,} \mathbf{X}_{i}^{(m)}\right)\right)^{2} \tag{78}\\
I_{\text {val }}\left(\theta_{2}\right)
\end{array}\right)=\frac{1}{N} \sum_{i=0}^{N-1}\left(\frac{1}{\left|A_{i}\right|^{2}} \sum_{m=1}^{\left|A_{i}\right|}\binom{v_{\theta_{2}}\left(t_{i+1}, \mathbf{X}_{i+1}^{(m)}\right)-v_{\theta_{2}}\left(t_{i}, \mathbf{X}_{i}^{(m)}\right)+}{H\left(t_{i}, \mathbf{X}_{i}^{(m)}, \nabla_{x} v_{\theta_{2}}\left(t_{i}, \mathbf{X}_{i}^{(m)}\right) \sigma\left(t, \mathbf{X}_{i}^{(m)}\right)\right) \Delta t_{i}}\right)^{2}\right)
$$

Future work

1. Apply DeepMartNet for various PDEs problem HJB, Black-Scholes, Fokker-Planck equation, Committor functions in TPT
2. ground state of many electron systems, non-Hermitian operator (electron under magnetic field)
3. Stochastic controls, financial applications

[^0]: ${ }^{1}$ joint work with Andrew He and Daniel Margolis

