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Abstract. In this paper, we derive diffusion equation models in the spectral domain for the
evolution of training errors of two-layer multi-scale deep neural networks (MscaleDNN) [6, 30], designed
to reduce the spectral bias of fully connected deep neural networks in approximating oscillatory
functions. The diffusion models are obtained from the spectral form of the error equation of the
MscaleDNN, derived with a neural tangent kernel approach and gradient descent training and a
sine activation function, assuming a vanishing learning rate and infinite network width and domain
size. The involved diffusion coefficients are shown to have larger supports if more scales are used in
the MscaleDNN, and thus, the proposed diffusion equation models in the frequency domain explain
the MscaleDNN’s spectral bias reduction capability. Numerical results of the diffusion models for a
two-layer MscaleDNN training match with the error evolution of actual gradient descent training with
a reasonably large network width, thus validating the effectiveness of the diffusion models. Meanwhile,
the numerical results for MscaleDNN show error decay over a wide frequency range and confirm the
advantage of using the MscaleDNN in approximating functions with a wide range of frequencies.
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1. Introduction. Deep learning algorithms have achieved great success in com-
puter vision [20, 42, 44], natural language processing [53, 35, 22] and many other
areas. Their computational power with the help of graphics processing units (GPUs)
and capability of handling high dimensional problems have led the computational
community to investigate their potentials in applied mathematics research. As a result,
a new research field known as scientific machine learning has became active in the
past few years.

One important task in scientific machine learning is to use deep neural networks
(DNNs) to approximate functions or solutions of partial differential equations (PDEs).
The idea of using neural networks to solve PDEs goes back to the 1990’s [9, 21]. In
general, four categories of deep PDE solvers have been investigated. The first category
is to use deep neural networks to improve classical numerical methods [14, 17, 46].
In the second category, the solution operators between infinite-dimensional spaces
are approximated by neural networks [1, 27, 26]. In the third category, the deep
neural networks are utilized to approximate the solutions of PDEs directly such as
the physics-informed neural networks (PINNs) [29, 38, 39], the deep Ritz method
[11, 34, 28, 18], and Garkerkin methods with weak adversarial networks (WAN) [54, 7].
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Lastly, Feynman-Kac formula approaches utilize the connection between linear and
nonlinear PDEs and (backward) stochastic differential equations to construct loss
functions for the learning algorithms [10, 16, 15, 3, 56, 4].

Despite their many successes for a wide range of applications, recent studies on
the convergence of the deep learning algorithms in theories and practical computations
show that standard fully connected DNNs have difficulties in learning high frequency
functions, a phenomenon referred as ”spectral bias” [37] or ”F-Principle” [51, 52]
in the literature. To overcome this bias, several strategies have been introduced to
design neural networks with better frequency resolution, producing promising results.
For solving PDEs, a multi-scale DNN (MscaleDNN) [6, 30, 47, 31, 25, 55], which
consists of a series of parallel fully connected sub-neural networks receiving scaled
inputs, has been proposed to learn highly oscillating solutions. Each individual scaled
sub-network in the MscaleDNN is designed to approximate a segment of frequency
content of the target function, and the effect of the scaling is to convert a specific range
of high frequency content to a lower one so that the learning can be accomplished
much faster. It was also proposed in [6, 30] that the MscaleDNN should use activation
functions with a localized frequency profile, such as the sine function and compact
supported functions (hat functions and B-splines, etc). In a related work for image
and 3D shape reconstruction, the Fourier feature networks, which in fact can be
obtained from the MscaleDNN with a sine activation function in their first layer, use
the sinusoidal mapping on their inputs and dramatically improve the performance of
learning [33, 57, 43].

To analyze the convergence of deep learning algorithms, the neural tangent kernel
(NTK), introduced in [19], has been a very effective tool to study the evolution of DNNs
in function spaces during training [2, 23, 12, 32, 36], and the eigenvector space for the
NTK provides many information on the convergence of the DNNs. The convergence
and spectral bias of the standard fully connected models and the improved performance
of the afore-mentioned Fourier feature embedded neural networks can be explained
by using the NTK. In fact, the NTK theory suggests that standard fully connected
DNN have a kernel with a rapid frequency falloff, which prevents them from being
able to represent the high-frequency contents of target functions effectively. Fourier
feature embedded neural networks have been designed to modify the Fourier spectrum
of the NTK so that a faster training convergence for high frequency components can
be achieved [33, 57, 43, 48].

Most of the convergence analysis so far has been done in the physical domain
[43, 32, 36, 40, 23]. Some explicit formulas of NTKs have been reported for two layers
neural networks with the ReLU activation function [49, 8, 40, 2, 50, 45]. The behaviors
of the NTK are usually obtained by analyzing the eigenvalues of the corresponding
Gram matrix [43, 36]. In this paper, in order to illuminate the mechanism behind the
observed reduced spectral bias in the convergence of the MscaleDNN in approximating
highly oscillatory functions and PDE solutions [6, 30, 47], we will derive an error
diffusion model, using the NTK approach, in the spectral domain for a two-layered
MscaleDNN with a sine activation function for the case of vanishing learning rate and
infinite network width and domain size. Our contribution is three folds: i) we prove that
the gradient descent training is equivalent to a diffusion problem in the Fourier spectral
domain; ii) the diffusion coefficients can be determined by the Fourier transform of the
NTK; iii) the MscaleDNNs with more scales result in diffusion coefficients with larger
value and support in the frequency domain. Therefore, our theoretical results provide
clear a mathematical explanation why the MscaleDNN can learn much faster over a
wider range of frequency. Also, due to the connection between the MscaleDNN and

2



Fourier feature network [43], the presented theory can be applied to the latter, as well.
The rest of the paper is organized as follows. In Section 2, a brief review of the

MscaleDNN is given. Section 3 derives the diffusion equation models for the training
error of high dimensional fitting problem. Analysis of the spectral bias reduction of
a two layer MscaleDNN will be done by solving the error diffusion equation models
using a Hermite spectral method in Section 4. The numerical results show that the
MscaleDNN leads to faster convergence over wider range of frequencies when the
number of scales is increased. Finally, section 5 gives a conclusion and future work.

2. A review of the multi-scale DNN (MscaleDNN). The frequency bias
behavior of the deep learning algorithms [37, 51] has inspired the development and usage
of the MscaleDNN in various applications. The MscaleDNN is simply a combination of
several fully connected DNNs with different scales on their inputs. It is very convenient
to replace a fully connected DNN by a MscaleDNN with equal number of total neurons
in a deep learning algorithm while much better results can be expected. The main
idea of the MscaleDNN is to do a radial scaling in the frequency domain such that the
learning is performed on functions of scaled-down frequency ranges [30, 47, 55].

To illustrate the idea, let us consider the DNN approximation of a given band-
limited target function f(x), x ∈ Rd, whose Fourier transform

(2.1) f̂(ξ) := F [f ](ξ) =

∫
Rd
f(x)e−i2πξTxdx,

has a compact support, i.e.,

(2.2) suppf̂(ξ) ⊂ BK(0) := {ξ ∈ Rd, |ξ| ≤ K}.

Note that the hyper-sphere BK(0) in the frequency domain can be partitioned into a
union of s+ 1 concentric annulus with uniform or non-uniform radial dimension, e.g.,
for the case of uniform radial dimension,

(2.3) BK(0) =

s⋃
j=0

Aj , Aj :=
{
ξ ∈ Rd,

jK

s+ 1
≤ |ξ| < (j + 1)K

s+ 1

}
.

Then, the target function in the frequency domain has a decomposition

(2.4) f̂(ξ) =

s∑
j=0

IAj (ξ)f̂(ξ) :=

s∑
j=0

f̂j(ξ),

where IAj (ξ) is the indicator function of the set Aj . From its definition, the component

f̂j(ξ) has a suppf̂j(ξ) ⊂ Aj , for j = 0, 1, · · · , s. A corresponding decomposition of
(2.4) in the physical domain is given by

(2.5) f(x) =

s∑
j=0

fj(x),

with fj(x) being the inverse Fourier transform

(2.6) fj(x) = F−1[f̂j ](x) :=

∫
Rd
f̂j(ξ)ei2πξTxdξ.
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With the decomposition (2.4), an appropriate scaling can be used to transform

the component f̂j(ξ) from the high frequency region Aj to a low frequency region

Aj/αj . The scaled version of f̂j(ξ) is defined as

(2.7) f̂
(scale)
j (ξ) = f̂j(αjξ),

where αj > 1 is an appropriate scaling factor for Aj . By the identity

(2.8) F [g(ax)](ξ) =
( 1

|a|

)d
F [g]

(ξ
a

)
,

the scaling (2.7) in the frequency domain leads to

(2.9) f
(scale)
j (x) := F−1[f̂

(scale)
j ](x) =

1

αdj
fj

( x
αj

)
,

or equivalently

(2.10) fj(x) = αdjf
(scale)
j (αjx).

By choosing an appropriate scale αj , we are able to make the Fourier spectrum of

f̂ scale
j (ξ) into a lower frequency range, i.e.,

(2.11) suppf̂ scale
j (ξ) ⊂

{
ξ ∈ Rd,

jK

(s+ 1)αj
≤ |ξ| < (j + 1)K

(s+ 1)αj

}
.

Fig. 2.1: Sketches of a fully connected DNN and a Multi-scale DNN.

As a result of the spectral bias of DNN, a fully connected DNN f(x;θj) with

parameters θj can be trained to learn f
(scale)
j (x) very fast if (j + 1)K/((s+ 1)αj) is

small enough. Therefore, the decomposition (2.5) and scaling formula (2.10) implies
that a deep learning algorithm using a neural network in the form

(2.12) Ns(x;θ) =

s∑
j=0

αdjf(αjx;θj)
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can be expected to have a more uniform convergence and less spectral bias, i.e.,
frequency uniform approximation to any band-limited function f(x). Deep neural
networks defined by (2.12) are named as the MscaleDNN and a schematic comparison
between fully connected DNN and MscaleDNN is shown in Fig. 2.1.

Previous work presented in [6, 30, 47] have shown that the MscaleDNN can
reduce spectral bias significantly in learning highly oscillatory functions, however,
mathematical analysis on the mechanism has not been presented in the literature. The
following analysis will build a foundation for the MscaleDNN and provide a strategy
to manipulate the neural networks.

3. Error diffusion equation model of a two-layer MscaleDNN. In this
section, the convergence of a machine learning algorithm for d-dimensional regression
problems with two layers multi-scale neural networks is analyzed. We will show that the
evolution of the error can be modeled by a diffusion equation in the Fourier frequency
domain as the width of the network goes to infinity and learning rate approaches to
zero.

Consider a regression problem with an objective function y = f(x) defined in a
bounded domain Ω ⊂ Rd. The machine learning algorithm with a neural network
denoted by N (x,θ) and mean square loss

(3.1) L(θ) =
1

2

∫
Ω

|N (x,θ)− f(x)|2dx,

will be discussed in the following analysis.
The gradient descent dynamics based on the loss functional (3.1) is

(3.2) θ(k+1) = θ(k) − τ∇L(θ(k)),

where τ is the learning rate. By regarding τ as the time step size, the continuum limit
dynamics at τ → 0 is

(3.3)
dθ(t)

dt
= −∇L(θ(t)).

With the mean square loss function (3.1) and the chain rule of differentiation, we
obtain

∂tN (x,θ) =[∇θN (x,θ)]T
dθ

dt

=−
∫

Ω

(∇θN (x,θ))T∇θN (x′, θ)(N (x′, θ)− f(x′))dx′

:=−
∫

Ω

Θ(x,x′;θ)(N (x′,θ)− f(x′))dx′,

(3.4)

for the dynamics of the network function N (x, θ), where

(3.5) Θ(x,x′;θ) = (∇θN (x,θ))T∇θN (x′, θ),

is the neural tangent kernel (NTK) proposed in [19].
A multi-scale neural network with one hidden layer (see. Fig. 2.1 (right)) is given

as

(3.6) Ns(x,θ) =
1√
N

s∑
j=0

αdj

q∑
k=1

σ(θT
jq+kαjx+ bjq+k), x ∈ Ω := [−1, 1]d,
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where s+ 1 is the number of scales, {αj}sj=0 are the scaling factors, q is the number
of neurons for each scale, N = (s+ 1)q is the total number of neurons in the hidden
layer. Apparently, the network includes the standard fully connected neural network
with one hidden layer as a special case of s = 0. For this two-layer multi-scale neural
network, a direct calculation gives its NTK
(3.7)

Θs(x,x
′;θ) =

s∑
j=0

α2d
j (α2

jx
Tx′ + 1)

N

q∑
k=1

σ′(θT
jq+kαpx+ bjq+k)σ′(θT

jq+kαjx
′ + bjq+k).

Setting the activation function

(3.8) σ(x) = sin(x)

and assuming all the parameters {θjk} in θj = (θj1, θj2, · · · , θjd)T, {bj} are indepen-
dent random variables of normal distribution, then, by the law of large numbers and
identity

(2π)−
d+1
2

∫
Rd+1

ei(θTx+yb)e−
|θ|2+b2

2 dθdb = e−
|x|2+y2

2 , ∀x ∈ Rd, y ∈ R,

we have

lim
q→∞

Θs(x,x
′;θ) =

s∑
j=0

α2d
j (α2

jx
Tx′ + 1)

s+ 1
E(cos(θT

1 αjx+ b1) cos(θT
1 αjx

′ + b1))

=

s∑
j=0

α2d
j (α2

jx
Tx′ + 1)

2(s+ 1)

[
e−2e−

α2
j |x+x

′|2

2 + e−
α2
j |x−x

′|2

2

]
.

(3.9)

Apparently, {θ1, b1} can replaced by the parameters of any neuron in the hidden layer.
According to the analysis in [19], the NTK will be static during the training assuming
the width of the neural network tends to infinity. In addition, the limit NTK is also a
convolution kernel as presented in [8, 40]. Suppose x and x′ are located on the unit
sphere, i.e., |x| = |x′| = 1, then the limit NTK is a function of the angle β between x
and x′. The NTKs of some multi-scale neural networks with finite width are compared
with their infinite width limit in Fig. 3.1. We can see that the NTK (3.7) has an limit
given above as q → ∞. In order to validate the static property of the limit NTK,
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Fig. 3.1: The NTKs in (3.7) and the limit NTK in (3.9) (d = 3, s = 3).
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we train a multi-scale neural network with s = 3, N = 12000 to fit a 3-dimensional
function in the domain [−1, 1]3. The scaling parameters αp are set to be 2p. The
NTKs of the multi-scale neural network after training 1000, 2000, 5000 epochs are
compared with the limit NTK in Fig. 3.2. The results clearly show that the NTK is
static during training.
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Fig. 3.2: The NTKs in (3.7) with d = 3, s = 3, N = 12000 during training.

Consequently, as the width of the network goes to infinity, the dynamics of the
gradient descent learning (3.4) tends to

∂t(Ns(x,θ)− f(x))

=−
s∑
j=0

α
2(d+1)
j xT

2(s+ 1)

∫
Ω

[
e−2Gj(x+ x′) + Gj(x− x′)

]
x′(Ns(x′,θ)− f(x′))dx′

−
s∑
j=0

α2d
j

2(s+ 1)

∫
Ω

[
e−2Gj(x+ x′) + Gj(x− x′)

]
(Ns(x′,θ)− f(x′))dx′,

(3.10)

where

(3.11) Gj(x) := e−α
2
j |x|

2/2, x ∈ Rd,

is the scaled Gaussian function.
Next, we define a zero extension of the error function by

(3.12) η(x,θ) =

{
0, x /∈ Ω,

Ns(x,θ)− f(x), x ∈ Ω,

then, the dynamic system (3.10) can be rewritten as

∂tη(x,θ)IΩ(x)

=−
s∑
j=0

IΩ(x)α
2(d+1)
j xT

2(s+ 1)

∫
Rd

[
e−2Gj(x+ x′) + Gj(x− x′)

]
x′η(x′,θ)dx′

−
s∑
j=0

IΩ(x)α2d
j

2(s+ 1)

∫
Rd

[
e−2Gj(x+ x′) + Gj(x− x′)

]
η(x′,θ)dx′,

(3.13)

where an indicator function IΩ(x) is used to extend the equation to the whole space.
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Existing works on DNN convergence analysis employ a discrete version of (3.13) in
the physical space by analyzing the eigenvalues of the Gram matrix [43, 32, 36, 40, 23].
However, to get a precise information on the spectral bias phenomena, it is more
natural to study the convergence behavior in the Fourier domain as follows.

Given any g(x) ∈ L1(Rd), the Fourier transform defined in (2.1) has the following
identities
(3.14)
F [∇g](ξ) = 2πiξF [g](ξ), ∇ĝ(ξ) = −2πiF [xg(x)](ξ), ∀xg(x) ∈ (L1(Rd))d,

and

(3.15) F [e−|x|
2

](ξ) = π
d
2 e−π

2|ξ|2 , F [g(ax)](ξ) =
( 1

|a|

)d
F [g]

(ξ
a

)
.

In addition, given two functions h(x), g(x), their cross-correlation and convolution
are defined as

(3.16) h ? g :=

∫
Rd
h(x′)g(x+ x′)dx′, h ∗ g :=

∫
Rd
h(x′)g(x− x′)dx′,

and we have teh following identities,

(3.17) ĥ ? g(ξ) = ĥ(ξ)ĝ(ξ), ĥ ∗ g(ξ) = ĥ(ξ)ĝ(ξ), f̂g(ξ) = f ∗ g(ξ).

Taking Fourier transform (2.1) on both sides of (3.13) with respect to x and then
applying (3.14)-(3.17) to rearrange the terms gives a integral-differential equation

∂η̂(ξ,θ(t)) ∗ ÎΩ(ξ)

∂t
=

∇ξ · [ s∑
j=0

α
2(d+1)
j Ĝj(ξ)

8π2(s+ 1)

(
∇ξη̂(ξ,θ(t))− e−2∇ξη̂(ξ,θ(t))

)]

−
s∑
j=0

α2d
j Ĝj(ξ)

2(s+ 1)
[e−2 ¯̂η(ξ,θ(t)) + η̂(ξ,θ(t))]

 ∗ ÎΩ(ξ),

(3.18)

where

(3.19) Ĝj(ξ) = (2π)
d
2α−dj e

− 2π2|ξ|2

α2
j .

The convolution with ÎΩ(ξ) makes the model too complicate to analyze. Neverthe-
less, if we consider the limit of infinite large domain, i.e., Ω→ Rd, the limit of ÎΩ(ξ)
is the Dirac delta function δ(ξ) and then (3.18) simplifies to

∂η̂(ξ,θ(t))

∂t
=∇ξ ·

[ s∑
j=0

α
2(d+1)
j Ĝj(ξ)

8π2(s+ 1)

(
∇ξη̂(ξ,θ(t))− e−2∇ξη̂(ξ,θ(t))

)]

−
s∑
j=0

α2d
j Ĝj(ξ)

2(s+ 1)
[e−2 ¯̂η(ξ,θ(t)) + η̂(ξ,θ(t))].

(3.20)

Define

A±s (ξ) =
1± e−2

8π2(s+ 1)

s∑
j=0

α
2(d+1)
j Ĝj(ξ), B±s (ξ) =

1± e−2

2(s+ 1)

s∑
j=0

α2d
j Ĝj(ξ),(3.21)
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and denote by η̂±(ξ,θ(t)) the real and imaginary parts of η̂(ξ,θ(t)), i.e.,

η̂(ξ,θ(t)) = η̂+(ξ,θ(t)) + iη̂−(ξ,θ(t)).

(Diffusion Model) As the coefficients in (3.20) are real valued functions, we can
rewrite (3.20) into two independent equations

(3.22) ∂tη̂
±(ξ, t) = ∇ξ ·

[
A∓s (ξ)∇ξη̂±(ξ, t)

]
−B±s (ξ)η̂±(ξ, t), ξ ∈ Rd,

with respect to the real and imaginary parts of η̂(ξ,θ(t)), respectively.
A simpler diffusion equation can be derived if the bias are set to zero in the

network. In fact, a function represented by the network without bias has the form

(3.23) Ns(x,θ) =
1√
N

s∑
j=0

αdj

q∑
k=1

σ(θT
jq+kαjx), x ∈ Ω := [−1, 1]d,

and the neural tangent kernel is given by

(3.24) Θs(x,x
′;θ) =

xTx′

N

s∑
j=0

α
2(d+1)
j

q∑
k=1

σ′(θT
jq+kαjx)σ′(θT

jq+kαjx
′).

Setting the activation function σ(x) = sin(x) again, and assuming all the parameters
{θp} are independent random variables of normal distribution, then, by law of large
numbers, we have

lim
q→∞

Θs(x,x
′;θ) = lim

q→∞

xTx′

N

s∑
j=0

α
2(d+1)
j

q∑
k=1

cos(θT
jq+kαjx) cos(θT

jq+kαjx
′)

=
xTx′

2(s+ 1)

s∑
j=0

α
2(d+1)
j E(cos(θT

1 αjx) cos(θT
1 αjx

′))

=
xTx′

2(s+ 1)

s∑
j=0

α
2(d+1)
j

[
Gj(x+ x′) + Gj(x− x′)

]
.

(3.25)

As the width of the network goes to infinity, the dynamics of the gradient descent
learning tends to

(3.26) ∂tη(x, θ) = − xT

2(s+ 1)

∫
Ω

s∑
j=0

α
2(d+1))
j

[
Gj(x+ x′) + Gj(x− x′)

]
x′η(x′,θ)dx′.

Mimicking the derivation for (3.20), we obtain from (3.26) that

∂η̂(ξ,θ(t))

∂t
=∇ξ ·

[ s∑
j=0

α
2(d+1))
j Ĝj(ξ)

8π2(s+ 1)

(
∇ξη̂(ξ,θ(t))−∇ξη̂(ξ,θ(t))

)]

=i∇ξ ·
[ s∑
j=0

α
2(d+1))
j

4π2(s+ 1)
Ĝj(ξ)∇ξη̂−(ξ,θ(t))

]
,

(3.27)

where η̂−(ξ,θ(t)) := Im
{
η̂(ξ,θ(t))

}
. The dynamic system (3.26) in the Fourier

frequency domain implies that only the imaginary part of the error evolves during
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the gradient descent training if a two layer multi-scale neural network with activation
function σ(x) = sin(x) and zero bias is used. This conclusion is consistent with the
fact that the network function (3.23) can only be used to fit odd functions. Actually,
the necessity of non-zero biases in a two layer neural network has been emphasized in
[40, 23].

Note that A±s (ξ), B∓s (ξ) defined in (3.21) are positive functions in Rd. Therefore,
the solution of (3.22) has an energy equality

(3.28)
d

dt

∫
Rd
|η̂±(ξ, t)|2dξ = −2

∫
Rd

[
A∓s (ξ)

∣∣∣∇ξη̂±(ξ, t)
∣∣∣2 +B±s (ξ)|η̂±(ξ, t)|2

]
dξ,

which implies that the solution η̂±(ξ, t) → 0 for any ξ ∈ Rd as t → ∞. That
means the gradient descent learning for a fitting problem with one hidden layer
neural network is convergent assuming that the learning rate is sufficiently small and
the width of the neural network is sufficiently large. It is clear that the diffusion
coefficients {A±s (ξ), B∓s (ξ)} plays a key role in the error decay speed. Several plots
of the coefficients {A∓s (ξ), B±s (ξ)} are given in Fig. 3.3 for different scales. We can
see that both A∓s (ξ) and B±s (ξ) have larger support and maximum values with an
increasing scale s. This implies that larger s will leads to fast error reduction in a
wider frequency region.
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Fig. 3.3: Diffusion coefficients A∓s (ξ) (left) and B±s (ξ) (right) with αj = 2j , s =
0, 1, 2, 3.

4. Spectral bias analysis of a two layer MscaleDNN using the diffusion
equation model. The analysis in previous section has shown that the error dynamics
of the gradient descent learning can be approximately described by the diffusion
equations (3.22) in the Fourier spectral domain when the network width and the
domain size go to infinity and the learning rate to zero. In this section, we will first
propose a Hermite spectral method to obtain highly accurate numerical solutions of
the diffusion equation. Some numerical results will be presented to show that the error
dynamics predicted by the diffusion model matches well with that of the MscaleDNN
during realistic training. Moreover, the results also validate the capability of spectral
bias reduction of the MscaleDNNs for wider range of frequencies. For simplicity, we
only consider the 1-dimensional case to illustrate the main results.

4.1. Hermite spectral method for the diffusion equation problem. In
order to examine quantitatively the decay of the error in the Fourier domain, we
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will solve numerically the equations in (3.22) with a Hermite spectral method for the
ξ-variable of the equations in (3.22) on the unbounded computational domain. For
this purpose, we introduce the Hermite functions (cf. [41]) defined by

(4.1) Ĥn(ξ) =
1

π1/4
√

2nn!
e−ξ

2/2Hn(ξ), n ≥ 0, ξ ∈ R,

where Hn(ξ) are Hermite polynomials. The Hermite functions Ĥn(ξ) are orthogonal

(4.2) (Ĥn(ξ), Ĥm(ξ)) =

∫ +∞

−∞
Ĥn(ξ)Ĥm(ξ)dx = δmn,

where δmn is Kronecker symbol.
We discretize the computational time interval [0, T ] into equally-spaced intervals

Ik := [k∆t, (k + 1)∆t] for k = 0, 1, · · · , N , where ∆t = T/N . Then, the Hermite spec-
tral method together with backward Euler time discretization is to find approximation

(4.3) η̃±m(ξ) =

p∑
k=0

η̃±mkĤk(λξ),

for η̂±(ξ, t) at time tm = m∆t s.t.,

(4.4)
( η̃±m(ξ)− η̃±m−1(ξ)

∆t
, Ĥn(λξ)

)
= −a(η̃±m(ξ), Ĥn(λξ)),

for all n = 0, 1, · · · , p. Here, λ is a scaling parameter to achieve resolution near ξ = 0,
and the bilinear form a(·, ·) is defined as

(4.5) a(φ(ξ), ψ(ξ)) =
(
A∓s (ξ)

dφ(ξ)

dξ
,
dψ(ξ)

dξ

)
− (B±s (ξ)φ(ξ).ψ(ξ)).

Next, with the unknown vector denoted by U±m = (η̃±m0, η̃
±
m1, · · · , η̃±mp)T, the numerical

scheme (4.4) gives a linear system

(4.6) D
U±m −U±m−1

∆t
= (K∓ + M±)U±m,

where D = (Dnk), K± = (K±nk), M = (M±nk) are matrices with entries given by

Dnk = (Ĥk(λξ), Ĥn(λξ)) =
1

λ
δnk, K±nk = −λ2

(
A±s (ξ)Ĥ ′k(λξ), Ĥ ′n(λξ)

)
,

M±nk = −(B±s (ξ)Ĥk(λξ), Ĥn(λξ)).

(4.7)

By using the recurrence formula of the Hermite functions, formulations for the
matrices K±, M± can be derived analytically (see the appendix A).

4.2. Spectral bias reduction of a two layer MscaleDNN. Some numerical
examples will be presented to show the capability of the diffusion model in predicting
the error dynamics of a two layer MscaleDNN. The predicted results will be compared
with the training error of the two-layer MscaleDNN with a large network width and
sine activation function. The spectral bias reduction phenomena of MscaleDNNs is
validated by the numerical solution of the diffusion model.
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Fig. 4.1: Frequency domain error decay in time for a regression problem as pre-
dicted by the diffusion model (3.22) for three MscaleDNNs of scale (s = 0, 3, 5) with
corresponding diffusion coefficients A±s (ξ), B±s (ξ).

Test 1 (Decaying behavior predicted by the diffusion model). We first
study the decay speed and range of the solution of the diffusion model (3.22). Consid-
ering an initial condition for the error function in the frequency domain

(4.8) η̂±(ξ, 0) =

{
1, |ξ| ≤ 5,

0, |ξ| > 5,

we will test the diffusion model (3.22) with three sets of coefficients {A∓s (ξ), B±s (ξ)},
s = 0, 3, 6. For the numerical discretization of the PDE, we take p = 100, ∆t = 1.0e−3
in (4.3). The numerical solutions at different time t are plotted in Fig. 4.1. The
numerical results clearly show that the initial error function decays faster over wider
frequency ranges with an increasing of s. It is worthy to emphasize that diffusion
coefficients {A∓0 (ξ), B±0 (ξ)} only produce fast decay in only a small neighborhood of the
zero frequency, which corresponds to exactly the spectral bias of a fully connected DNN
[37, 51]. These observations are consistent with the performance of the MscaleDNN,
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which has faster convergence in the approximation of highly oscillated functions.

Test 2 (Validation of error diffusion model with real MscaleDNN train-
ing). In this test, we will show that the error dynamics of a finite but wide enough
2-layered multi-scale neural network can be predicted by the diffusion equation model
quite well.

We consider a fitting problem with an objective function

(4.9) f(x) = sin aπx+ cos bπx,

on the interval [−β, β]. The Fourier transform of f(x) with zero extension outside
[−β, β] is

f̂(ξ) =
sin[(b+ 2ξ)βπ]

(b+ 2ξ)π
+

sin[(b− 2ξ)βπ]

(b− 2ξ)π
+ i

[
sin[(a+ 2ξ)βπ]

(a+ 2ξ)π
− sin[(a− 2ξ)βπ]

(a− 2ξ)π

]
.

For the two layers multi-scale neural network, the Fourier transform of Ns(x, θ) with
zero extension outside [−β, β] can be calculated as

N̂s(ξ, θ) =
1√
N

s∑
j=0

αj

q∑
k=1

Sj,k(ξ, θ) +
1√
N

s∑
j=0

αj

q∑
k=1

Cj,k(ξ, θ),

where

Sj,k(ξ, θ) =
−2πiξ(e2πiβξ sin(αjθjq+kβ − bjq+k) + e−2πiβξ sin(αjθjq+kβ + bjq+k))

α2
jθ

2
jq+k − 4π2ξ2

,

and

Cj,k(ξ, θ) =
αjθjq+k(e2πiβξ cos(αjθjq+kβ − bjq+k)− e−2πiβξ cos(αjθjq+kβ + bjq+k))

α2
jθ

2
jq+k − 4π2ξ2

.

We will show that the error η̂NN (ξ, θ) = N̂s(ξ, θ)− f̂(ξ) of the MscaleDNN by the
gradient descent learning agrees with that predicted by the diffusion equation (3.22).
We take a = 4.2, b = 5.8, β = 1 and the initial errors are given by ηNN (x, θ0) =
Ns(x, θ0)− f(x) with parameters initialized by sampling from independent random
variables of normal distribution. In the gradient descent training for the Ns(x, θ), the
training data set consists of 2000 uniformly distributed points in [−β, β] and learning
rate τ = 1.0e − 3 is adopted. In this example, a two layers neural network with
m = 12, 000, αj = 2j and scale s = 3 is tested and the training is performed in full
batch.

Meanwhile, in the Fourier spectral domain, the diffusion equation (3.22) with

initial function η̂(ξ, θ0) = N̂s(ξ, θ0)− f̂(ξ) will be solved with a p-th order the Hermite
spectral method introduced above. We take p = 300 and ∆t = τ in the discretization.

The Fourier transform of ηNN (x, θ(t)), denoted by

η̂NN (x, θ(t)) = η̂+
NN (ξ, θ(t)) + iη−NN (ξ, θ(t))

are compared with η̃±m(ξ) at t = m∆t, see Fig. 4.2. Although many approximations
have been used in deriving the diffusion model, the results show that the prediction
produced by the diffusion model captured the main features of the error over a long
time training process.
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Fig. 4.2: Frequency domain error evolution (left - real part, right - imaginary part) in
time of a 3-scale MscaleDNN with a network width N = 12, 000 (line) vs prediction
by diffusion model (3.22) (symbol).

On the other hand, we can also compare the training error with the diffusion
model prediction in the physical domain. Using the fact that [13, 24]

(4.10) F−1[Ĥk(ξ)](x) =

∫ +∞

−∞
Ĥk(ξ)e2iπξxdξ =

√
2πikĤk(2πξ),

the Hermite approximation of the error predicted by the diffusion model, i.e.,

(4.11) η̃±m(ξ) =

p∑
k=0

η̃mkĤk(λξ),
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Fig. 4.3: Physical domain error evolution in time of a 3-scale MscaleDNN with a
network width N = 12, 000 (line) vs prediction by diffusion model (3.22) (symbol).

can be analytically transformed back to the physical domain as
(4.12)

η±m(x) := F−1[η̃±m](x) =

p∑
k=0

η̃mk

∫ +∞

−∞
Ĥk(λξ)e2iπxξdξ =

√
2π

λ

p∑
k=0

η̃mkikĤk

(2πx

λ

)
.

Then, in the physical domain the errors ηNN (x, θ(tm)) from the MscaleDNN training
and ηm(x) = η+

m(x) + iη−m(x) predicted by the diffusion equation can be compared in
Fig. 4.3. Clearly, the evolution of the errors matches quite well in physical domain.
It is worthy to point out that the fitting domain Ω = [−1, 1] is not large. However,
the diffusion model can still be a satisfactory predictor for the real error through the
training of the MScaleDNN with a large enough network width.

Test 3 (Reduction of spectral bias predicted by error diffusion model).
With the confirmation of predicting capability of the diffusion equation model (3.22)
for the error decay of the MscaleDNN with a large enough network width, we will use
the model to demonstrate the spectral bias reduction of MscaleDNNs with increasing
scales.

Again, We set the network width at m = 12000, and a = 4.2, b = 5.8 and the
initial errors are given by η̂(ξ, θ0) = N̂s(ξ, θ0) − f̂(ξ) with parameters initialized by
sampling from independent random variables of normal distribution. In the Hermite
spectral method approximation of the diffusion equation (3.22), we take p = 300 and
∆t = 1.0e− 3. The numerical solution of the diffusion equations at different time t for
a standard fully connected network (FCN) corresponding to coefficients {A±0 (ξ), B∓0 }
and a 3-scales MscaleDNN corresponding to coefficients {A±3 (ξ), B∓3 } are plotted in
Fig. 4.2-Fig. 4.3. We can see clearly that FCN with diffusion coefficients {A±0 (ξ), B∓0 }
only produce decay in a very small neighborhood of the zero frequency while the 3-
scale MscaleDNN with coefficients {A±3 (ξ), B∓3 } produce much faster decay in a larger

frequency interval. Although the initial errors at t = 0 are different, N̂0(ξ, θ0)− f̂(ξ)
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for FCN and N̂3(ξ, θ0)− f̂(ξ) for 3-scale MscaleDNN, the numerical results all verify
that multi-scale neural networks has better performance in spectral bias reduction
compared with the FCN.
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Fig. 4.4: Frequency domain error decay in time predicted by (3.22) for a FCN
corresponding to coefficients {A±0 (ξ), B∓0 }.
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Fig. 4.5: Frequency domain error decay in time predicted by (3.22) for a 3-scale
MscaleDNN corresponding to coefficients {A±3 (ξ), B∓3 }.

5. Conclusion and future work. In this paper, we investigated the convergence
and spectral bias reduction properties of a two-layer multi-scale neural network for
regression problems by deriving diffusion equation models in the frequency domain
for predicting its error evolution. With the sine activation function, the gradient
descent learning of MscaleDNNs leads to the diffusion equation models for the error
assuming that the width of the neural network goes to infinity, the learning rate to zero
and the fitting domain to the whole space. The diffusion coefficients of the diffusion
equations are shown to have wider support in the frequency domain with more scales
used in the MscaleDNNs, resulting in a reduction of spectral bias for the MscaleDNNs.
This is consistent with the performance of the MscaleDNN with faster convergence in
approximating highly oscillated functions from various applications. Moreover, the
derived diffusion equation can predict the convergence of the MscaleDNNs learning
algorithm even with a finite and reasonably wide network in a finite domain.

The analysis of the MScaleDNNs with more layers, and other popular activation
functions, e.g., ReLU, Sigmoid, etc, will be studied following a similar approach of
this paper.
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Appendix A. Analytic formula for the computation of matrices K±,M±.
We first recall the recurrence formulas (cf. [41])

Ĥ0(x) = π−1/4e−x
2/2, Ĥ1(x) =

√
2π−1/4xe−x

2/2,

Ĥn+1(x) = x

√
2

n+ 1
Ĥn(x)−

√
n

n+ 1
Ĥn−1(x) = 0, n ≥ 1,

(A.1)

Ĥ ′0(x) = −π
−1/4

2
xe−x

2/2 = −
√

2

2
Ĥ1(x),

Ĥ ′n(x) =
√

2nĤn−1(x)− xĤn(x) =

√
n

2
Ĥn−1(x)−

√
n+ 1

2
Ĥn+1(x), n ≥ 1,

(A.2)

of the Hermite functions Ĥn(x).
Then, by the recurrence formula (A.2), we have

Ĥ ′0(x)Ĥ ′0(x) =
1

2
Ĥ1(x)Ĥ1(x),

Ĥ ′0(x)Ĥ ′n(x) = −
√
n

2
Ĥ1(x)Ĥn−1(x) +

√
n+ 1

2
Ĥ1(x)Ĥn+1(x), n ≥ 1.

(A.3)

and

(A.4)

Ĥ ′k(x)Ĥ ′n(x)

=

[√
k

2
Ĥk−1(x)−

√
k + 1

2
Ĥk+1(x)

][√
n

2
Ĥn−1(x)−

√
n+ 1

2
Ĥn+1(x)

]

=

√
nk

2
Ĥk−1(x)Ĥn−1(x)−

√
(n+ 1)k

2
Ĥk−1(x)Ĥn+1(x)

−
√
n(k + 1)

2
Ĥk+1(x)Ĥn−1(x) +

√
(n+ 1)(k + 1)

2
Ĥk+1(x)Ĥn+1(x),

for all n, k ≥ 1. Therefore,

(A.5) K±00 =
1

2
C±11, K±0n = K±n0 = −

√
n

2
C±1,n−1 +

√
n+ 1

2
C±1,n+1, n ≥ 1,

where C±nk = −λ2
∫ +∞
−∞ A±s (ξ)Ĥk(λξ)Ĥn(λξ)dξ. Otherwise, for all n, k ≥ 1,

K±nk =

√
n

2

(√
kC±n−1,k−1 −

√
k + 1C±n−1,k+1

)
−
√
n+ 1

2

(√
kC±n+1,k−1 −

√
k + 1C±n+1,k+1

)
.

(A.6)

Noting that

(A.7) M±nk = −
∫ +∞

−∞
B±s (ξ)Ĥk(λξ)Ĥn(λξ)dξ,
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and A±s (ξ), B±s (ξ) are linear combination of Gaussian functions as presented in (3.21),
the computation of C±nk and M±nk can be reduced to compute the weighted inner
products

Ink(τ) =

∫ +∞

−∞
Ĥn(x)Ĥk(x)e−τx

2

dx

=
1√
τ + 1

∫ +∞

−∞
H̃n

( y√
τ + 1

)
H̃k

( y√
τ + 1

)
e−y

2

dy.

(A.8)

where H̃n(x) is the normalized Hermite polynomial defined by H̃n(x) = ex
2/2Ĥn(x).

In fact, for A±s (ξ), B±s (ξ) given in (3.21), we have

C±nk = − (1± e−2)λ

2(2π)
3
2 (s+ 1)

s∑
j=0

α3
jInk

( 2π2

α2
jλ

2

)
,

M±nk = −
√
π

2

1± e−2

(s+ 1)λ

s∑
j=0

αjInk

( 2π2

α2
jλ

2

)
.

(A.9)

Next, we present formulas for the calculation of the integrals Ink(τ). Given any

scaling factor λ, scaled Hermite polynomial H̃n(λy) can be represented by H̃n(y) as
follows

(A.10) H̃n(λy) =

n∑
k=0

hn,k(λ)H̃k(y),

where {hn,k(λ)} can be calculated via recurrence formulas (A.15). Therefore,
(A.11)

Ink(τ) =
1√
τ + 1

∫ ∞
−∞

H̃n

( y√
τ + 1

)
H̃k

( y√
τ + 1

)
e−y

2

dy

=
1√
τ + 1

n∑
i=0

k∑
j=0

hn,i

( 1√
τ + 1

)
hk,j

( 1√
τ + 1

)∫ ∞
−∞

H̃i(y)H̃j(y)e−y
2

dy

=
1√
τ + 1

min{n,k}∑
i=0

hn,i

( 1√
τ + 1

)
hk,i

( 1√
τ + 1

)
.

Next, we derive recurrence formulas for the computation of the coefficients
{hnk(λ)}. We drop the explicit dependence on λ without confusion in the following

derivation. By the definition of H̃n(y) and the recurrence formula (A.1), we have

(A.12)
√

2(n+ 1)H̃n+1(λy) = 2λyH̃n(λy)−
√

2nH̃n−1(λy), n ≥ 1.

Substituting the expansion (A.10) into (A.12) gives for n ≥ 1
(A.13)√

2(n+ 1)

n+1∑
k=0

hn+1,k(λ)H̃k(y) = 2λy

n∑
k=0

hn,k(λ)H̃k(y)−
√

2n

n−1∑
k=0

hn−1,k(λ)H̃k(y).

Noting that
(A.14)

H̃1(y) =
√

2yH̃0(y), 2yH̃k(y) =
√

2(k + 1)H̃k+1(y) +
√

2kH̃k−1(y) , k ≥ 1,
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direct calculation from (A.13) gives

2λy

n∑
k=0

hn,k(λ)H̃k(y)

=λ

n∑
k=1

hn,k(λ)
[√

2(k + 1)H̃k+1(y) +
√

2kH̃k−1(y)
]

+ 2ayhn,0(λ)H̃0(y)

=a

n∑
k=0

√
2(k + 1)hn,k(λ)H̃k+1(y) + a

n∑
k=1

√
2khn,k(λ)H̃k−1(y)

=a

n+1∑
k=1

√
2khn,k−1(λ)H̃k(y) + a

n−1∑
k=0

√
2(k + 1)hn,k+1(λ)H̃k(y).

Therefore, (A.13) can be rearranged into

√
2(n+ 1)

n+1∑
k=0

hn+1,kH̃k(y)

=λ

n+1∑
k=1

√
2khn,k−1(λ)H̃k(y) + λ

n−1∑
k=0

√
2(k + 1)hn,k+1(λ)H̃k(y)

−
√

2n

n−1∑
k=0

hn−1,k(λ)H̃k(y)

=[
√

2λhn,1(λ)−
√

2nhn−1,0(λ)]H̃0(y) + λ
√

2nhn,n−1(λ)H̃n(y)

+ λ
√

2(n+ 1)hn,n(λ)H̃n+1(y)

+

n−1∑
k=1

[λ
√

2khn,k−1(λ) + λ
√

2(k + 1)hn,k+1(λ)−
√

2nhn−1,k(λ)]H̃k(y).

Matching the coefficients on both sides of the above equation gives us

(A.15)

hn+1,0(λ) =

√
1

n+ 1
λhn,1(λ)−

√
n

n+ 1
hn−1,0(λ),

hn+1,k(λ) = λ

√
k + 1

n+ 1
hn,k+1(λ)−

√
n

n+ 1
hn−1,k(λ) + λ

√
k

n+ 1
hn,k−1(λ),

for 1 ≤ k ≤ n− 1,

hn+1,k(λ) = λ

√
k

n+ 1
hn,k−1(λ), k = n, n+ 1,

for all n ≥ 1, while the initial values are given by

(A.16) h0,0(λ) = 1, h1,0(λ) = 0, h1,1(λ) = λ.

By induction, hn,k(λ) has explicit formula for all k = 0, 1, · · · , n

(A.17) hn,k(λ) =

0, n− k = 2s+ 1,√
n!

2n−kk!

1

s!
λk(λ2 − 1)s, n− k = 2s.
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