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Abstract. Hierarchical bases of arbitrary order for H(div)-conforming triangular and
tetrahedral elements are constructed with the goal of improving the conditioning of the
mass and stiffness matrices. For the basis with the triangular element, it is found nu-
merically that the conditioning is acceptable up to the approximation of order four, and
is better than a corresponding basis in the dissertation by Sabine Zaglmayr [High Or-
der Finite Element Methods for Electromagnetic Field Computation, Johannes Kepler
Universität, Linz, 2006]. The sparsity of the mass matrices from the newly constructed
basis and from the one by Zaglmayr is similar for approximations up to order four.
The stiffness matrix with the new basis is much sparser than that with the basis by
Zaglmayr for approximations up to order four. For the tetrahedral element, it is iden-
tified numerically that the conditioning is acceptable only up to the approximation of
order three. Compared with the newly constructed basis for the triangular element,
the sparsity of the mass matrices from the basis for the tetrahedral element is relatively
sparser.

AMS subject classifications: 65N30, 65F35, 65F15

Key words: Hierarchical bases, simplicial H(div)-conforming elements, matrix conditioning.

1 Introduction

In this paper we are concerned with the construction of well-conditioned hierarchical
bases of arbitrary order for H(div)-conforming R

n simplicial elements. Such bases are
useful with the mixed finite element method [1,2] for the second-order elliptic problems,

∗Corresponding author. Email address: wcai@uncc.edu (W. Cai)

http://www.global-sci.com/ 621 c©2013 Global-Science Press



622 J. Xin, W. Cai and N. Guo / Commun. Comput. Phys., 14 (2013), pp. 621-638

and may be applied with the conforming element for the numerical study of elasticity [3],
electromagnetism [4], incompressible fluid flow [5], and magnetohydrodynamics [6].

In 1975 Raviart and Thomas [7] introduced the H(div)-conforming triangular ele-
ment for the mixed finite element method to solve the Poisson equation with zero Dirich-
let boundary condition. Among other results, Nédélec [8] generalized the idea of Raviart
and Thomas, and constructed the H(div)-conforming tetrahedral element for the mixed
finite element method, the so-called Nédélec element of the first kind. A totally differ-
ent H(div)-conforming tetrahedral element, the so-called Nédélec element of the sec-
ond kind was constructed in 1986 [9]. Using different techniques Brezzi and collabo-
rators [11] constructed two families of mixed finite elements for second order elliptic
problems, including the H(div)-conforming triangular element. Further generalization
to three dimensions had been carried out in 1987 by Brezzi, et al. [12]. From the per-
spective of differential forms Hipmair [13] gave a canonical construction of the H(curl)-
and H(div)-conforming R

n simplicial elements. See also the related works [14–17] from
such a perspective. In addition to other results Ainsworth and Coyle [18] constructed
hierarchical bases of arbitrary order for H(div)-conforming tetrahedral element. With
polynomial approximation of an odd-numbered degree, the issue with enforcing con-
formity arising from a hierarchical basis [19, 20] had also been addressed in [18]. For the
H(div)-conforming simplicial elements and using techniques different from those in [18]
Zaglmayr [21] gave two sets of hierarchical bases of arbitrary order.

It is well known in the finite element community that a hierarchical basis is more suit-
able than a nodal basis for the p- and hp-adaptivity [22,23]. However, a critical issue with
a hierarchical basis is that with a high-order approximation the conditioning of the mass
and stiffness matrices becomes to worsen to the extent of rendering the approximation
results questionable and even meaningless. The conditioning issue has been realized and
addressed by various researchers in different context for several conforming approxima-
tions, for examples, in [24–30]. In this study we continue our previous efforts [28–30] and
concentrate on constructing well-conditioned hierarchical bases for H(div)-conforming
simplicial elements. The conditioning issue with H(div)-conforming simplicial elements
has specifically never been dealt with in the studies [7–9,11–13,18,21]. Nevertheless, this
does not necessarily mean that the matrix conditioning is not an issue with a hierarchical
basis for H(div)-conforming simplicial elements. On the contrary, we show in this study
that such an issue does exist, and the mass and stiffness matrices may become badly ill-
conditioned with a high-order approximation, and that this issue is more pronounced
with the three-dimensional H(div)-conforming tetrahedral elements.

Our new construction is based upon the works [18,21] and is inspired by the research
on orthogonal polynomials of several variables [31]. For the H(div)-conforming tetrahe-
dral elements and to achieve the goal of rendering the hierarchical basis well conditioned,
our strategy is classifying shape functions into several groups, each of which is associated
with a geometrical identity of the canonical reference tetrahedron [18], and making the
shape functions orthonormal within each group with respect to the reference element.
This is made possible by adroitly applying one fundamental result - Proposition 2.3.8
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in the monograph [31]. Once we have the hierarchical basis for the three-dimensional
tetrahedral elements, we use the strategy of dimension reduction to construct the basis for
the two-dimensional triangular elements, and for this purpose we have combined part
of the results obtained by Zaylmayr [21]. It is worthwhile to point out that in the con-
struction of H(div)-conforming tetrahedral elements Ainsworth and Coyle had applied
Legendre polynomials, and for this peculiar choice it is found out that for the polyno-
mial approximation of degree p = 2, the twelve edge-based face functions are not linearly
independent [18]. Thus, the hierarchical basis [18] for the H(div)-conforming tetrahe-
dral elements is not complete if the degree of polynomial approximation is greater than
one. It should also be remarked that for a certain uniform polynomial approximation the
hierarchical basis for H(div)-conforming tetrahedral elements [21] is not complete either
in the sense of the Nédélec element of the second kind [9] because the number of shape
functions is less than the dimension of the polynomial approximation.

The rest of the paper is organized as follows. The construction of hierarchical ba-
sis functions for the H(div)-conforming tetrahedral and triangular elements is given in
Section 2 and Section 3, respectively, on the canonical reference element. For the construc-
tion of global basis functions, one can use the Piola transform [10]. Numerical results of
matrix conditioning and sparsity are reported in Section 4. Discussion and concluding
remarks are presented in Section 5.

2 Basis functions for H(div)-conforming tetrahedral elements

The result in Proposition 2.3.8 can be found in the monograph [31] with some corrections
given in [30]. We construct shape functions for the H(div)-conforming tetrahedral ele-
ment on the canonical reference 3-simplex. The shape functions are grouped into several
categories based upon their geometrical entities on the reference 3-simplex [18]. The basis
functions in each category are constructed so that they are orthonormal on the reference
element.

Any point in the 3-simplex K3 is uniquely located in terms of the local coordinate sys-
tem (ξ,η,ζ). The vertexes are numbered as v0(0,0,0),v1(1,0,0),v2(0,1,0),v3(0,0,1). The
barycentric coordinates are given as

λ0 :=1−ξ−η−ζ, λ1 := ξ, λ2 :=η, λ3 := ζ. (2.1)

The directed tangent on a generic edge ej =[j1, j2] is defined as

τej :=τ[j1 ,j2]=vj2 −vj1 , j1< j2. (2.2)

The edge is parametrized as
γej

:=λj2 −λj1 , j1< j2. (2.3)

A generic edge can be uniquely identified with

ej :=[j1, j2], j1=0,1,2, j1< j2≤3, j= j1+ j2+sgn(j1). (2.4)
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Each face on the 3-simplex can be identified by the associated three vertexes, and is
uniquely defined as

fj1 :=[j2, j3, j4], 0≤{j1, j2, j3, j4}≤3, j2< j3< j4. (2.5)

The standard bases in R
n are noted as~ei, i=1,··· ,n, and n={2,3}.

2.1 Face functions

The face functions are further grouped into two categories: edge-based face functions
and face bubble functions.

Edge-based face functions

These functions are associated with the three edges of a certain face fj1 , and by construc-
tion all have non-zero normal components only on the associated face fj1 , viz.

nf jk ·Φ
f j1

,i

e[k1 ,k2]
=0, jk 6= j1, (2.6)

where nf jk is the unit outward normal vector to face fjk .

The orthonormal shape functions are given as

Φ
f j1

,i

e[k1 ,k2]
=Ciλk3

(1−λk1
)iP

(3,0)
i

(

2λk2

1−λk1

−1

)

∇λk1
×∇λk2

|∇λk1
×∇λk2

|
, (2.7a)

where

Ci=
√

3(2i+4)(2i+5), i=0,1,··· ,p−1, (2.7b)

and

k1={j2, j3}, k2={j3, j4}, k1 < k2, k3={j2, j3, j4}\{k1,k2}. (2.7c)

In the formula (2.7a), the function P
(3,0)
i (•) is the classical un-normalized Jacobi polynomial

of degree i with a single variable [32]. One can prove the orthonormal property of these
edge-based face functions

〈

Φ
f j1

,m

e[k1 ,k2]
,Φ

f j1
,n

e[k1 ,k2]

〉∣

∣

K3 =δmn, {m,n}=0,1,··· ,p−1, (2.8)

where δmn is the Kronecker delta. Note that with our new construction, the edge-based
face functions are all linearly independent, which is also verified by the fact that in the
spectrum of the mass (Gram) matrix, none of the eigenvalues is zero. More details can be
found in Section 4.
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Face bubble functions

The face bubble functions which belong to each specific group are associated with a par-
ticular face fj1 . They vanish on all edges of the reference 3-simplex K3, and the normal
components of which vanish on other three faces, viz.

nf jk ·Φ
f j1
m,n =0, jk 6= j1. (2.9)

The explicit formula is given as

Φ
f j1
m,n= ι(1−λj2 )

m(1−λj2 −λj3)
nP

(2n+3,2)
m

(

2λj3

1−λj2

−1

)

×P
(0,2)
n

(

2λj4

1−λj2 −λj3

−1

)

∇λj3 ×∇λj4

|∇λj3 ×∇λj4 |
, (2.10)

where

ι=Cn
mλj2 λj3 λj4 , (2.11)

where

Cn
m =

√

(2n+3)(m+n+3)(m+2n+4)(m+2n+5)(2m+2n+7)(2m+2n+8)(2m+2n+9)
√

(m+1)(m+2)
, (2.12)

and

0≤{m,n},m+n≤ p−3. (2.13)

By construction the face bubble functions share again the orthonormal property on the
reference 3-simplex K3:

<Φ
f j1
m1,n1

,Φ
f j1
m2,n2

> |K3 =δm1m2 δn1n2 , 0≤{m1,m2,n1,n2},m1+n1,m2+n2≤ p−3. (2.14)

2.2 Interior functions

The interior functions are classified into three categories: edge-based, face-based and
bubble interior functions. By construction the normal component of each interior func-
tion vanishes on all faces of the reference 3-simplex K3, viz.

nf j ·Φt =0, j={0,1,2,3}. (2.15)

Edge-based interior functions

The tangential component of each edge-based function does not vanish on the associated
only edge ek :=[k1,k2] but vanishes all other five edges, viz.

τej ·Φt,i
e[k1 ,k2]

=0, ej 6=ek, (2.16)
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where τej is the directed tangent along the edge ej :=[j1, j2]. The shape functions are given
as

Φ
t,i
e[k1 ,k2]

=Ciλk1
λk2

(1−λk1
)iP

(1,2)
i

(

2λk2

1−λk1

−1

)

τek

|τek |
, (2.17a)

where

Ci=(i+3)

√

(2i+4)(2i+5)(2i+7)

i+1
, i=0,1,··· ,p−2. (2.17b)

Again one can prove the orthonormal property of edge-based interior functions:

<Φ
t,m
e[k1,k2]

,Φt,n
e[k1 ,k2]

> |K3 =δmn, {m,n}=0,1,··· ,p−2. (2.18)

Face-based interior functions

These functions which are associated with a particular face fj1 have non-zero tangential
components on their associated face only, and have no contribution to the tangential
components on all other three faces, viz.

nf jk ×Φ
t,f j1
m,n =0, jk 6= j1. (2.19)

Further each face-based interior function vanishes on all the edges of the 3-simplex K3,
viz.

τek ·Φ
t,f j1
m,n =0. (2.20)

The formulas of these functions are given as

Φ
t,f1

j1
m,n = ι(1−λj2)

m(1−λj2−λj3)
nP

(2n+3,2)
m

(

2λj3

1−λj2

−1

)

P
(0,2)
n

(

2λj4

1−λj2−λj3

−1

)

τ[j2,j3]
∣

∣τ[j2,j3]
∣

∣

, (2.21a)

Φ
t,f2

j1
m,n = ι(1−λj2)

m(1−λj2−λj3)
nP

(2n+3,2)
m

(

2λj3

1−λj2

−1

)

P
(0,2)
n

(

2λj4

1−λj2−λj3

−1

)

τ[j2,j4]

∣

∣τ[j2,j4]
∣

∣

, (2.21b)

where ι is given in (2.11) and 0≤{m,n},m+n≤ p−3. The face-based interior functions
enjoy the orthonormal property on the reference 3-simplex K3:

<Φ
t,fi

j1
m1,n1

,Φ
t,fi

j1
m2,n2

>|K3=δm1m2 δn1n2 ,i={1,2},0≤{m1,m2,n1,n2},m1+n1,m2+n2≤p−3. (2.22)

Interior bubble functions

The interior bubble functions vanish on the entire boundary ∂K3 of the reference 3-simplex
K3. The formulas of these functions are given as

Φ
t,~ei

ℓ,m,n=χP
(2m+2n+8,2)
ℓ

(2λ1−1)P
(2n+5,2)
m

(

2λ2

1−λ1
−1

)

×P
(2,2)
n

(

2λ3

1−λ1−λ2
−1

)

~ei, i=1,2,3, (2.23a)
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where

χ=Cℓ,m,nλ0λ1λ2λ3(1−λ1)
m(1−λ1−λ2)

n, (2.23b)

with

Cℓ,m,n=C1
ℓ,m,nC2

ℓ,m,n, (2.23c)

where

C1
ℓ,m,n=

√

(ℓ+2m+2n+9)(ℓ+2m+2n+10)(2ℓ+2m+2n+11)(m+2n+6)

(ℓ+1)(m+1)(n+1)
, (2.23d)

C2
ℓ,m,n=

√

(m+2n+7)(2m+2n+8)(n+3)(n+4)(2n+5)

(ℓ+2)(m+2)(n+2)
, (2.23e)

and

0≤{ℓ,m,n},ℓ+m+n≤ p−4. (2.23f)

Again, one can show the orthonormal property of the interior bubble functions

<Φ
t,~ei

ℓ1 ,m1,n1
,Φ

t,~e j

ℓ2,m2,n2
> |K3 =δℓ1ℓ2

δm1m2 δn1n2 , (2.24a)

where

0≤{ℓ1,ℓ2,m1,m2,n1,n2},ℓ1+m1+n1,ℓ2+m2+n2≤ p−4, {i, j}=1,2,3. (2.24b)

Following the same manner as in [18], it can be shown that the newly constructed
basis is indeed a hierarchical one for H(div)-conforming tetrahedral elements.

3 Basis functions for H(div)-conforming triangular elements

Any point in the 2-simplex K2 is uniquely located in terms of the local coordinate system
(ξ,η). The vertexes are numbered as v0(0,0),v1(1,0),v2(0,1). The barycentric coordinates
are given as

λ0 :=1−ξ−η, λ1 := ξ, λ2 :=η. (3.1)

The directed tangent on a generic edge ej=[j1, j2] is similarly defined as in (2.2). The edge
is also parametrized as in (2.3). A generic edge can be uniquely identified with

ej :=[j1, j2], j1={0,1}, j1< j2≤2, j= j1+ j2. (3.2)

The two-dimensional vectorial curl operator of a scalar quantity, which is used in our
construction, needs a proper definition. We use the one given in the book [33], viz.

curl(u) :=∇×u :=

[

∂u

∂η
,−

∂u

∂ξ
.

]τ

(3.3)
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Based upon the newly created shape functions for the three-dimensional H(div)-
conforming tetrahedral elements and using the technique of dimension reduction we con-
struct the basis for the H(div)-conforming triangular elements in two dimensions. How-
ever, it is easy to see that the two groups for the face functions cannot be appropriately
modified for our purpose. Instead we borrow the idea of Zaglmayr in the disserta-
tion [21], viz., we combine the edge-based shape functions in [21] with our newly con-
structed edge-based and bubble interior functions. In [21] Zaglmayr had applied the
so-called scaled integrated Legendre polynomials in the construction, viz.

Ls
n(x,t) := tn−1

x
∫

−t

ℓn−1

(

ξ

t

)

dξ, n≥2, t∈ (0,1], (3.4)

where ℓn(•) is the classical un-normalized Legendre polynomial of degree n.

3.1 Edge functions

For the completeness of our basis construction, in this subsection we record the results
in [21]. Associated with each edge the formulas for these functions are given as

Φ
N0

e[k1 ,k2]
=λk2

∇×λk1
−λk1

∇×λk2
(3.5a)

for the lowest-order approximation and

Φ
j

e[k1,k2]
=∇×

(

Ls
j+2(γek

,λk2
+λk1

)
)

, j=0,··· ,p−1 (3.5b)

for higher-order approximations.

3.2 Interior functions

The interior functions are further classified into two categories: edge-based and bubble
interior functions. By construction the normal component of each interior function van-
ishes on either edge of the reference 2-simplex K2, viz.

nej ·Φt =0, j={1,2,3}, (3.6)

where nej is the unit outward normal vector to edge ej.

Edge-based interior functions

The tangential component of each edge-based function does not vanish on the associated
only edge ek :=[k1,k2] but vanishes the other two edges, viz.

τej ·Φt,i
e[k1 ,k2]

=0, ej 6=ek, (3.7)
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where τej is the directed tangent along the edge ej :=[j1, j2]. The shape functions are given
as

Φ
t,i
e[k1,k2]

=Ciλk1
λk2

(1−λk1
)iP

(0,2)
i

(

2λk2

1−λk1

−1

)

τek

|τek |
, (3.8a)

where

Ci=
√

2(i+2)(i+3)(2i+3)(2i+5), i=0,1,··· ,p−2. (3.8b)

The following orthonormal property of edge-based interior functions can be proved

<Φ
t,m
e[k1 ,k2]

,Φt,n
e[k1 ,k2]

> |K2 =δmn, {m,n}=0,1,··· ,p−2. (3.9)

Interior bubble functions

The interior bubble functions vanish on the entire boundary ∂K2 of the reference 2-
simplex K2. The formulas of these functions are given as

Φ
t,~ei
m,n=Cm,nλ0λ1λ2(1−λ0)

mP
(2,2)
m

(

λ1−λ2

1−λ0

)

P
(2m+5,2)
n (2λ0−1)~ei, i=1,2, (3.10a)

where

Cm,n=

√

(m+3)(m+4)(2m+5)(2m+n+6)(2m+n+7)(2m+2n+8)

(m+1)(m+2)(n+1)(n+2)
, (3.10b)

and

0≤{m,n},m+n≤ p−3. (3.10c)

One can again prove the orthonormal property of the interior bubble functions

<Φ
t,~ei
m1 ,n1

,Φ
t,~e j
m2,n2

> |K2 =δm1m2 δn1n2 , (3.11a)

where

0≤{m1,m2,n1,n2},m1+n1,m2+n2≤ p−3, {i, j}=1,2. (3.11b)

In a similar fashion as in [18], it can be shown that the newly constructed shape func-
tions indeed form a hierarchical basis with polynomial approximation of degree p for
H(div)-conforming triangular elements.

4 Conditioning and sparsity of matrices

We check the conditioning of the mass matrix M and the stiffness matrix K on the refer-
ence element. With the mixed finite element method [1, 2, 7] the mass matrix comes from
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the variational formulation of the Laplacian in a second-order elliptic problem, e.g., the
Poisson’s equation in potential theory [34]

−∇·∇u(x)= f (x), x∈Ω, (4.1a)

u(x)=0, x∈∂Ω. (4.1b)

The weak formulation of this problem is that finding a pair of functions (p,u) ∈
H(div;Ω)×L2(Ω) so that the following holds

∫

Ω

p·qdx+
∫

Ω

u∇·qdx=0, ∀q∈H(div;Ω), (4.2a)

∫

Ω

v(∇·p+ f )dx=0, ∀v∈L2(Ω). (4.2b)

The components of the mass matrix are defined as

Mℓ1,ℓ2
:=<Φℓ1

,Φℓ2
> |Kd , d=2,3. (4.3)

The mass matrix M is symmetric and positive definite, and therefore has real positive
eigenvalues. The condition number of a real symmetric positive definite matrix A is
calculated by the formula

κ(A)=
λmax

λmin
, (4.4)

where λmax and λmin are the maximum and minimum eigenvalues of the matrix A, re-
spectively. For the incompressible fluid flows, e.g., governed by the Navier-Stokes equa-
tions [35] or by the magnetohydrodynamics equations [36] the authors [35, 36] have ap-
plied the mixed finite element for the spatial discretization. In particular, they [35, 36]
have used the H(div)-conforming element for the Laplacian ∆u of the velocity u. In this
case, we have the stiffness matrix K, which is defined component-wise as

Kℓ1,ℓ2
:=<∇Φℓ1

:∇Φℓ2
> |Kd , d=2,3. (4.5)

The stiffness matrix K is symmetric and semi-positive definite, and therefore has real
non-negative eigenvalues. The condition number of the stiffness matrix K is calculated
by the formula (4.4) with the zero eigenvalue excluded. We also check the sparsity of both
matrices. Sparsity of a matrix affects directly the storage of the matrix in a computer.

4.1 The case with H(div)-conforming tetrahedral elements

As we have pointed out in the introduction that neither the hierarchical basis by
Ainsworth and Coyle [18] nor the one by Zaglmayr [21] spans the complete space of poly-
nomial approximation of degree p, thus, we make no comparative study with these two
bases, viz. only presenting the results from our newly constructed basis.
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Figure 1: Condition number of the mass matrix (left) and stiffness matrix (right) for H(div)-conforming
tetrahedral elements.

For the polynomial approximations p={1,2,3,4}, the condition numbers of the mass
matrix are κ(Mp)={3.08356e1,6.98681e3,3.41186e6,5.97230e9}. And for the stiffness ma-
trix, they are κ(Kp) = {1.98918e1,3.39454e3,1.09441e6,2.88294e9}. So for each order of
approximation, one can see that the condition numbers of the mass and stiffness ma-
trix are on the same order. As the approximation order increases, the growth trend of
the condition numbers is shown in Fig. 1. Up to third-order approximation and on the
logarithmic scale, the condition numbers κ(Mp) and κ(Kp) grow about linearly with re-
spect to the approximation order p. Starting from the order p=4, it diverges from linear
growth. Since the condition numbers κ(M4) and κ(K4) are already large and on the order
nine, i.e. O(109), from the practical point of view it is suggested that the newly derived
hierarchical bases be applied up to order three.

The sparsity of the mass and stiffness matrices for the approximation order p={1,2,3}
is shown in Figs. 2-4. For the mass matrix and for the approximation order p=1, there are
96 nonzero entries out of 144, accounting 66.67%; and for p=2, 444 out of 900, accounting
49.33%; and for p = 3, 1550 out of 3600, accounting 43.06%. So the mass matrix Mp is
relatively sparser as the approximation order p increases. For the stiffness matrix and
for the approximation order p = 1, there are 60 nonzero entries out of 144, accounting
41.67%; and for p=2, 528 out of 900, accounting 58.67%; and for p=3, 2046 out of 3600,
accounting 56.83%.

4.2 The case with H(div)-conforming triangular elements

Since we have borrowed the idea of Zaglmayr [21] for the construction of edge functions,
regarding the performance of the newly constructed basis we make a comparative study
with the one by Zaglmayr [21].

For the polynomial approximations p= {1,2,3,4} and with the new basis, the condi-
tion numbers of the mass matrix are κ(MN

p )={2.01619e1,8.80420e1,9.84694e2,1.28619e4}

versus κ(MZ
p )={2.01619e1,8.40179e2,4.12583e3,1.59113e4} for the basis by Zaglmayr [21].
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Figure 2: Sparsity of the mass matrix Mp1 (left) and stiffness matrix Kp1 (right) for H(div)-conforming
tetrahedral elements.
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Figure 3: Sparsity of the mass matrix Mp2 (left) and stiffness matrix Kp2 (right) for H(div)-conforming
tetrahedral elements.
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Figure 4: Sparsity of the mass matrix Mp3 (left) and stiffness matrix Kp3 (right) for H(div)-conforming
tetrahedral elements.
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Figure 5: Condition number of the mass matrix (left) and stiffness matrix (right) for H(div)-conforming
triangular elements.

A significant difference is for the second- and third-order approximation: the condition-
ing has been improved about nine-fold and fourfold, respectively. The condition num-
bers of the stiffness matrix are κ(KN

p )={1.04039e1,5.95907e1,4.19692e2,8.84348e3} for the

new basis versus κ(KZ
p )={1.04039e1,2.24781e2,7.73521e2,2.02725e3} for the basis by Za-

glmayr [21]. The conditioning of the stiffness matrix for the second-order approximation
has been improved about fourfold with the new basis. For each order of approximation
and for both bases, the condition number of the mass matrix is greater than that of the
stiffness matrix. With the increase of the approximation order, the growth trend of the
condition numbers is shown in Fig. 5 for both matrices. As the condition number κ(M4)
has already grown to the order four, i.e. O(104) for both bases, for practical applications,
it is advised that the newly derived hierarchical bases be applied up to order four.

The comparison for the sparsity of mass matrices is shown in Figs. 6-8. For the ap-
proximation order p=2 and for the new basis and the one by Zaglmayr [21], there are 122
versus 116 nonzero entries out of 144, accounting 84.72% versus 80.56%; and for p=3, 290
versus 292 out of 400, accounting 72.50% versus 73.00%; and for p=4, 582 versus 600 out
of 900, accounting 64.67% versus 66.67%. Thus, the mass matrix Mp is relatively sparser
as the approximation order p increases for both bases. From Figs. 6-8 it can be seen that
for each order of approximation, the pattern of sparsity for the mass matrix is somehow
different. However, the percentage of sparsity, i.e. the ratio between the number of zero
entries and the number of the full matrix is about the same for both bases.

The comparison for the sparsity of stiffness matrices is shown in Figs. 9-11. For the
approximation order p=2 and for the new basis and the one by Zaglmayr [21], there are
76 versus 86 nonzero entries out of 144, accounting 52.78% versus 59.72%; and for p=3,
236 versus 272 out of 400, accounting 59.00% versus 68.00%; and for p=4, 532 versus 692
out of 900, accounting 59.11% versus 76.89%. Unlike the case with the mass matrices, now
the stiffness matrices with both bases get denser with the increase of approximation order.
However, with the new basis, the percentage of nonzero entries relative to the number of
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Figure 6: Sparsity of the mass matrix Mp2 for H(div)-conforming triangular elements. Left: new basis, right:
Zaglmayr basis [21].
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Figure 7: Sparsity of the mass matrix Mp3 for H(div)-conforming triangular elements. Left: new basis, right:
Zaglmayr basis [21].

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 8: Sparsity of the mass matrix Mp4 for H(div)-conforming triangular elements. Left: new basis, right:
Zaglmayr basis [21].
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Figure 9: Sparsity of the stiffness matrix Kp2 for H(div)-conforming triangular elements. Left: new basis, right:
Zaglmayr basis [21].
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Figure 10: Sparsity of the stiffness matrix Kp3 for H(div)-conforming triangular elements. Left: new basis,
right: Zaglmayr basis [21].
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Figure 11: Sparsity of the stiffness matrix Kp4 for H(div)-conforming triangular elements. Left: new basis,
right: Zaglmayr basis [21].
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the full matrix increases rather slowly. From Figs. 9-11 it can be seen that for each order
of approximation, the stiffness matrix is much sparser with the new basis relative to the
basis by Zaglmayr [21]. The most striking difference is with the approximation order
four, for which the percentage of sparsity differs by more than 17%. Another observation
is that with the new basis the stiffness matrix is relatively much sparser than the mass
matrix for each order of approximation.

5 Discussion and conclusion

New hierarchical bases for simplicial H(div)-conforming elements in two and three di-
mensions have been proposed with the goal of improving the conditioning of the mass
and stiffness matrices. The construction of the new basis is motivated by the study of
orthogonal polynomials of several variables [31] over an n-simplex. This is achieved by
appropriately exploiting classical Jacobi polynomials over simplicial elements.

For the three-dimensional H(div)-conforming tetrahedral elements, numerically it is
found that for cubic polynomial approximation the condition numbers of the mass and
stiffness matrices have grown up to order six, i.e. O(106). Thus, for the sake of reliability
of numerical simulations, it is suggested that one may use the newly constructed hierar-
chical bases up to the third order but not beyond. The mass matrix is relatively sparser
with the increase of approximation order. For a particular order of approximation, the
mass matrix is even sparser than its corresponding two-dimensional one.

For the two-dimensional H(div)-conforming triangular elements, it is identified nu-
merically that for quadruple polynomial approximation the condition number of the
mass matrix has increased up to order four, i.e. O(104). Therefore, to render numerical
simulations being reliable, it is advised that one may use the newly constructed hierar-
chical bases up to the fourth order but not beyond. Up to fourth-order of approximation,
the mass matrix from the new basis has better conditioning relative to the one from the
Zaglmayr basis [21], the most significant improvement being the quadratic approxima-
tion. For the mass matrix and for the approximation up to order four, the newly derived
basis has almost the same sparsity rate as the one by Zaglmayr [21]. Up to fourth-order
of approximation, the stiffness matrix from the new basis is much sparser than that from
the basis by Zaglmayr [21], and the percentage of sparsity differs by more than 17% for
the fourth-order of approximation.
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