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Abstract We construct well-conditioned orthonormal hierarchical bases for simplicial L2

finite elements. The construction is made possible via classical orthogonal polynomials of
several variables. The basis functions are orthonormal over the reference simplicial elements
in two and three dimensions. The mass matrices M are identity while the conditioning of
the stiffness matrices S grows as O(p3) with respect to the order p. The diagonally normal-
ized stiffness matrices are well conditioned. The diagonally normalized composite matrices
ζM +S are also well conditioned for a wide range of ζ . For the mass, stiffness and compos-
ite matrices, the bases in this study have much better conditioning than existing high-order
hierarchical bases.

Keywords Hierarchical bases · Simplicial L2-conforming elements · Matrix conditioning

1 Introduction

In 1973 Reed and Hill [19] introduced the discontinuous Galerkin (DG) method as a tech-
nique to solve neutron transport problems. The first numerical analysis of the DG method
was carried out by Lasaint and Raviart [17] for a linear advection equation. The DG method
has been dormant for quite a few years, and nowadays has become a popular method to
solve a variety of problems. A recent review [11] on the DG method is done for convection-
dominated problems.

Unlike the classical continuous Galerkin method [8] where a C 0 continuity requirement
on the solution space has to be maintained across inter-element boundaries, there is no such
restriction for the DG method. Thus, the DG method allows for a more flexible basis con-
struction and mesh configurations, e.g., non-conforming and hybrid meshes. In the work
of Cockburn and Shu [10] which initiated much recent DG research, piecewise linear and
quadratic finite elements were used on rectangular and triangular meshes. For the triangular
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element with quadratic polynomial approximation, six degrees of freedom for each element
have been associated with the geometrical identities on the triangle, viz., three at the mid-
points of the edges and three on the vertexes [10]. It has been shown that for the resulting
DG discretization, the local mass matrix is not diagonal but a dense matrix [10]. Applying
the Gram-Schmidt process, Remacle et al. [20] have constructed an orthogonal polynomial
basis out of the monomials on a 2-simplex, and applied the DG method for compressible
flow problems, i.e., the double Mach reflection and the Rayleigh-Taylor instability. How-
ever, the explicit formula for the shape function is not given in [20]. Furthermore, it is noted
that the choice of a different initial non-orthogonal basis will result in a different orthog-
onal basis after the Gram-Schmidt process. Targeting on solving the Maxwell equations
with the DG method and based on previous works, Cockburn et al. [9] have proposed the
locally divergence-free polynomials. On a rectangular mesh, improved results have been
shown relative to those based on the classical piecewise polynomials [9]. However, the
global divergence-free property is lost with the locally divergence-free approximation [9].
It should be pointed out that the shape functions with the locally divergence-free property
have to be carefully designed [9], and it is not clear how to extend the technique directly to
non-rectangular meshes, e.g., triangular and tetrahedral meshes.

In this study we focus our attention on constructing orthonormal hierarchical polyno-
mial bases on reference simplicial elements, viz., triangular and tetrahedral elements with
the DG method. In particular, with increasing orders of approximation, we are concerned
with the growth rate of the condition numbers of the stiffness matrices from the variational
formulation of second-order elliptic problems [5, 6]. As in the cases for the H1-conforming
[1, 7, 24] and H(curl)-conforming [2, 21–23] hierarchical bases, the conditioning of the
stiffness matrices could be problematic with improperly constructed high-order hierarchical
bases for the DG methods. Such an issue has not been sufficiently addressed. Our effort
in constructing orthonormal hierarchical bases with well-conditioned stiffness matrices for
simplicial elements seems to be the first of such attempts, which is motivated by a recent
study of Dunkl and Xu [13] on orthogonal polynomials of several variables over standard
domains, e.g., cube, unit ball, and simplex. It should be noted that early in 1975 Koorn-
winder has already constructed orthogonal polynomials over several types of domain in two
dimensions, e.g., a disk, a triangle, and a region bounded by two straight lines and a parabola
[16]. Independently, Dubiner [12] has obtained different orthogonal bases on a triangle and
on a triangular pyramid (a tetrahedron) for spectral methods (see the Remark 2.1 in Sect. 2).
For the two-dimensional case on the reference 2-simplex, our formula differs from the one
by Koornwinder [16], and the basis in this study is also different from the one obtained by
Remacle et al. via the Gram-Schmidt process [20].

The rest of the paper is organized as follows. The construction of orthonormal and hi-
erarchical basis functions is given in Sect. 2. Numerical results of matrix conditioning are
reported in Sect. 3. Discussion and conclusion are presented in Sect. 4. The proof of Theo-
rem 2.1 is given in the Appendix.

2 Construction of Orthonormal Hierarchical Basis Functions

We construct orthonormal hierarchical basis functions for the L2-conforming elements on
the reference simplicial elements. Let Kn be the simplex in R

n, i.e.,

Kn :=
{

x ∈ R
n : 0 ≤ xi;

n∑
i=1

xi ≤ 1

}
. (1)
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The notation |x| means the discrete �1 norm for a generic point x ∈ Kn , i.e.,

|x| =
n∑

i=1

|xi |. (2)

Denote xi as the truncation or projection of the point x in the first i-dimensions, viz.,

x0 := 0, xi := (x1, x2, . . . , xi), 1 ≤ i ≤ n. (3)

For �α ∈ N
n
0 , denote �αi as the truncation or projection of the vector �α from the i-th dimension,

i.e.,

�αi := (αi, αi+1, . . . , αn), 1 ≤ i ≤ n. (4)

For �τ ∈ R
n+1, the notation �τ i is similarly defined as in �αi , viz.,

�τ i := (τi, τi+1, . . . , τn+1), 1 ≤ i ≤ n + 1. (5)

It is shown [13] that the weight function associated with the classical orthogonal polynomi-
als on Kn takes the form

W
(Kn)

�τ (x) = (1 − |x|)τn+1− 1
2

n∏
i=1

x
τi− 1

2
i , x ∈ Kn, τi ≥ −1

2
, i = 1,2, . . . , n + 1. (6)

The basis functions are constructed with the help of the following theorem on orthogonal
polynomials over an n-simplex Kn [13].

Theorem 2.1 The polynomials

P�α
(
W

(Kn)

�τ ;x
)

=
[
h

(Kn)

�α
]−1 n∏

i=1

(
1 − |xi |

1 − |xi−1|
)|�αi+1|

p
(ρ1

i
,ρ2

i
)

αi

(
2xi

1 − |xi−1| − 1

)
, (7a)

where p
(ρ1

i
,ρ2

i
)

αi is the classical orthonormal Jacobi polynomials of one variable, ρ1
i =

2|�αi+1| + |�τ i+1| + (n − i − 1)/2 and ρ2
i = τi − 1/2, are orthonormal, the normalization

constant h
(Kn)

�α is given by

[
h

(Kn)

�α
]−2 =

n∏
i=1

2ρ1
i
+ρ2

i
+1, (7b)

and the weight function takes the form in (6).

The proof of Theorem 2.1 can be found in [13]. However, the normalization constant
h

(Kn)

�α given in [13] is wrong. The fallacious [13] normalization constant has been corrected
in our formula (7b). For the sake of completeness of this work, a concise proof is given in
the Appendix.

Using the result in Theorem 2.1, the orthonormal hierarchical shape functions on the
reference element in 2-D and 3-D dimensions are given as follows:
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• Orthonormal Hierarchical Basis in 2-D Simplex

�K2

i,j = √
2(i + j + 1)(2j + 1)(1 − x1)

jP
(2j+1,0)

i (2x1 − 1)P
(0,0)
j

(
2x2

1 − x1
− 1

)
,

0 ≤ i, j ; i + j ≤ p. (8)

• Orthonormal Hierarchical Basis in 3-D Simplex

�K3

i,j,k = λ(1 − x1)
j (1 − x1 − x2)

kP
(2j+2k+2,0)

i (2x1 − 1)P
(2k+1,0)
j

(
2x2

1 − x1
− 1

)

× P
(0,0)
k

(
2x3

1 − x1 − x2
− 1

)
(9)

with the scaling coefficient

λ = √
(2k + 1)(2j + 2k + 2)(2i + 2j + 2k + 3), 0 ≤ i, j, k; i + j + k ≤ p. (10)

Again, from Theorem 2.1, we have the following orthonormal conditions of the basis
functions:

M�1,�2 := 〈��1 ,��2〉|Kd = δ�1,�2 (11)

where � = (i, j) in 2-D and � = (i, j, k) in 3-D.
In deriving the above formula (8), the parameter τi in Theorem 2.1 takes the value of 1

2 .
The function P (α,β)

n (x) is the classical un-normalized Jacobi polynomials of a single vari-
able [18].

Theorem 2.2 Let p ∈ N0. The bases for the spaces Pp(Kn), n = 2,3 of polynomials of total
degree at most p are given by

Pp(K2) = span{�K2

i,j : 0 ≤ i, j ; i + j ≤ p}, (12a)

Pp(K3) = span{�K3

i,j,k : 0 ≤ i, j, k; i + j + k ≤ p}. (12b)

Proof First, for each shape function, we have �K2

i,j ∈ Pp(K2) and �K3

i,j,k ∈ Pp(K3). Further,
it is noticed that with different indexes the shape functions given in (8) and in (9) are lin-
early independent. Second, the numbers of independent shape functions are (p+1)(p+2)

2 and
(p+1)(p+2)(p+3)

6 for two and three dimensions, respectively, which coincide with their respec-
tive dimensions of Pp(K2) and Pp(K3). �

Remark 2.1 The formulas of orthonormal basis functions above are different from Dubiner
bases proposed in [12]. In fact, the Dubiner bases [12] are special cases of the more general
result in Theorem 2.1. The parameter of the weight function in equation (6) takes the partic-
ular value τi = 0 [13] for the Dubiner basis [12], whereas in our construction this parameter
has the value τi = 1

2 .
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3 Conditioning of Matrices

We check the conditioning of the mass M and stiffness S matrices on the reference element.
The stiffness matrix comes from the variational formulation of the Laplacian in a second-
order elliptic problem, e.g., the Poisson’s equation in potential theory [15]

−�u = f. (13)

The components of each matrix are defined as

M�1,�2 := 〈��1 ,��2〉|Kd , S�1,�2 := 〈∇��1 ,∇��2〉|Kd , d = 2,3. (14)

In view of the construction of the shape functions, the mass matrix M is an identity matrix
with condition number of one (1). The stiffness matrix S is real, symmetric and semi-positive
definite, and therefore has non-negative real eigenvalues.

The condition number of a matrix A is calculated by the formula

κ(A) = λmax

λmin
, (15)

where λmax and λmin are the maximum and minimum eigenvalues of the matrix A, respec-
tively. For the stiffness matrix S, only positive eigenvalues are counted. We also consider
the diagonally normalized mass and stiffness matrices, viz.

M̃ := 
− 1

2
M M

− 1
2

M , S̃ := 
− 1

2
S S

− 1
2

S , (16)

where M and S are the diagonal matrices of the mass M and stiffness matrices S, respec-
tively.

3.1 Conditioning of Mass Matrix M and Stiffness Matrix S

3.1.1 2-D Case

The condition numbers of the original and normalized mass and stiffness matrices are shown
in Tables 1 and 2, respectively. As a comparison, the condition numbers generated with the
basis by Ainsworth and Coyle [4] are recorded. The ratios of the condition numbers between
the A-C basis [4] and the new basis are shown in each table as well.

From Table 1 two observations on the conditioning for the original un-normalized matri-
ces can be made.

• For the mass matrix M , starting from order three, the conditioning with the basis in this
study is at least three orders better than the basis by Ainsworth and Coyle [4]. The higher
the order of approximation, the greater the advantage with the new basis. Indeed, starting
from order ten, the conditioning with the new basis is at least twelve orders better relative
to the one in [4].

• For the stiffness matrix S, starting from order six, the conditioning with the basis in this
study is at least three order better than the basis by Ainsworth and Coyle [4]. The higher
the order of approximation, the greater the advantage with the new basis. For example,
starting from order ten, the conditioning with the new basis has been at least seven orders
better relative to the one in [4].
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Table 1 Two-dimensional case: condition numbers of the mass matrix M and stiffness matrix S from the
new basis and the basis in [4], denoted ‘A-C’

Order Mass Stiffness Ratio

p New A-C New A-C Mass Stiff-

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 1.000e00 1.200e01 3.000e00 9.000e00 1.200e01 3.000e00

2 1.000e00 2.180e02 9.899e00 4.678e01 2.180e02 4.726e00

3 1.000e00 2.483e03 4.055e01 3.254e02 2.483e03 8.025e00

4 1.000e00 3.557e04 8.641e01 3.066e03 3.557e04 3.548e01

5 1.000e00 5.155e05 8.120e01 3.652e04 5.155e05 4.498e02

6 1.000e00 7.889e06 2.819e02 4.963e05 7.889e06 1.761e03

7 1.000e00 1.568e08 2.285e02 7.353e06 1.568e08 3.218e04

8 1.000e00 3.022e09 7.049e02 1.155e08 3.022e09 1.639e05

9 1.000e00 5.735e10 1.042e03 1.931e09 5.735e10 1.853e06

10 1.000e00 1.064e12 1.490e03 3.433e10 1.064e12 2.304e07

Table 2 Two-dimensional case: condition numbers of the diagonally normalized mass matrix M̃ and stiff-
ness matrix S̃ from the new basis and the basis in [4], denoted ‘A-C’

Order Mass Stiffness Ratio

p New A-C New A-C Mass Stiff-

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 1.000e00 3.000e00 2.618e00 9.000e00 3.000e00 3.438e00

2 1.000e00 4.121e01 4.795e00 2.783e01 4.121e01 5.804e00

3 1.000e00 4.459e02 6.893e00 2.019e02 4.459e02 2.929e01

4 1.000e00 6.787e03 1.125e01 1.917e03 6.787e03 1.704e02

5 1.000e00 8.615e04 1.618e01 2.168e04 8.615e04 1.340e03

6 1.000e00 1.353e06 2.280e01 3.092e05 1.353e06 1.356e04

7 1.000e00 2.776e07 3.087e01 4.347e06 2.776e07 1.408e05

8 1.000e00 4.720e08 4.058e01 7.065e07 4.720e08 1.741e06

9 1.000e00 8.688e09 5.208e01 1.151e09 8.688e09 2.210e07

10 1.000e00 1.459e11 6.530e01 2.022e10 1.459e11 3.096e08

Similarly, by examining the figures in Table 2 and by comparing the figures in Tables 1
and 2, one can make a couple of remarks.

• For the normalized mass matrix M̃ , starting from order four, the new basis is at least three
order better relative to the one in [4], and starting from order ten, the basis in this study
has begun to show eleven orders better than the Ainsworth-Coyle basis [4]. The higher
the order of approximation, the greater the advantage with the proposed new basis.

• For the normalized stiffness matrix S̃, the conditioning is not a problem with the new
basis: the matrix is well conditioned. In contrast, the condition number with the basis in
[4] still grows exponentially with polynomial degree p. Indeed, starting from order five,
the new basis is at least three order better relative to the one in [4], and starting from
order ten, the conditioning of the new basis has been at least eight orders better relative
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Table 3 Three-dimensional case: condition numbers of the mass matrix M and stiffness matrix S from the
new basis and the basis in [4], denoted ‘A-C’

Order Mass Stiffness Ratio

p New A-C New A-C Mass Stiff-

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 1.000e00 2.000e01 4.000e00 1.600e01 2.000e01 4.000e00

2 1.000e00 8.399e02 2.019e01 1.215e02 8.399e02 6.018e00

3 1.000e00 3.936e04 4.195e01 4.715e03 3.936e04 1.124e02

4 1.000e00 8.142e05 1.118e02 5.104e04 8.142e05 4.565e02

5 1.000e00 2.532e07 2.063e02 1.457e06 2.532e07 7.063e03

6 1.000e00 6.181e08 3.505e02 2.562e07 6.181e08 7.310e04

7 1.000e00 1.885e10 5.597e02 7.087e08 1.885e10 1.266e06

8 1.000e00 5.728e11 8.511e02 1.675e10 5.728e11 1.968e07

9 1.000e00 1.948e13 1.244e03 5.068e11 1.948e13 4.074e08

10 1.000e00 6.207e14 1.759e03 1.332e13 6.207e14 7.572e09

Table 4 Three-dimensional case: condition numbers of the diagonally normalized mass matrix M̃ and stiff-
ness matrix S̃ from the new basis and the basis in [4], denoted ‘A-C’

Order Mass Stiffness Ratio

p New A-C New A-C Mass Stiff-

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 1.000e00 4.000e00 3.912e00 1.600e01 4.000e00 4.090e00

2 1.000e00 2.465e02 9.460e00 6.594e01 2.465e02 6.970e00

3 1.000e00 2.957e03 1.356e01 1.393e03 2.957e03 1.027e02

4 1.000e00 1.356e05 1.994e01 1.812e04 1.356e05 9.087e02

5 1.000e00 2.627e06 2.842e01 4.181e05 2.627e06 1.471e04

6 1.000e00 1.378e08 3.868e01 9.835e06 1.378e08 2.543e05

7 1.000e00 2.427e09 5.170e01 2.596e08 2.427e09 5.021e06

8 1.000e00 1.355e11 6.658e01 7.697e09 1.355e11 1.156e08

9 1.000e00 2.768e12 8.415e01 2.051e11 2.768e12 2.437e09

10 1.000e00 1.245e14 1.042e02 6.402e12 1.245e14 6.144e10

to the Ainsworth-Coyle basis [4]. The higher the order of approximation, the greater the
advantage with the newly constructed basis.

3.1.2 3-D Case

The conditioning results of the original and normalized mass and stiffness matrices are
shown in Tables 3 and 4, respectively. Similar to the two-dimensional case, from Table 3
two observations on the conditioning for the original un-normalized matrices can be made.

• For the mass matrix M , starting from order three, the conditioning with the basis in this
study is at least four orders better than the basis by Ainsworth and Coyle [4]. The higher
the order of approximation, the greater the advantage with the new basis. Indeed, starting
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Fig. 1 Two-dimensional case: condition numbers of the mass matrices: original (left) and diagonally nor-
malized (right)

from order nine, the conditioning with the new basis is at least thirteen orders better
relative to the one in [4].

• For the stiffness matrix S, starting from order six, the conditioning with the basis in this
study is at least four orders better than the basis by Ainsworth and Coyle [4]. The higher
the order of approximation, the greater the advantage with the new basis. For instance,
starting from order nine, the conditioning with the new basis has been at least eight orders
better relative to the one in [4].

Similar to its two-dimensional counterpart, by examining the figures in Table 4 and by
comparing the figures in Tables 3 and 4, one can make a couple of remarks.

• For the normalized mass matrix M̃ , starting from order four, the new basis is at least five
order better relative to the one in [4], and starting from order nine, the basis in this study
has begun to show twelve orders better than the Ainsworth-Coyle basis [4]. The higher
the order of approximation, the greater the advantage with the new basis.

• For the normalized stiffness matrix S̃, the conditioning again is not a problem with the
new basis: the matrix is well conditioned. In contrast, the condition number with the basis
in [4] still grows exponentially with polynomial degree p. Indeed, starting from order
five, the new basis is at least four order better relative to the one in [4], and starting from
order nine, the new basis has begun to show nine orders better than the Ainsworth-Coyle
basis [4]. The higher the order of approximation, the greater the advantage with the newly
constructed basis.

3.1.3 O(p3) Growth Rate of Conditioning Number

In order to see the trend of the growth with the condition numbers for both matrices, we plot
the condition numbers vs. the order of approximation on a logarithmic scale. The results for
the two-dimensional case are shown in Figs. 1 and 2 for the mass and stiffness matrices,
respectively. Similarly, results for the three-dimensional case are shown in Figs. 3 and 4 for
the mass and stiffness matrices, respectively.

From Figs. 1 and 3 obviously one can see that for the Ainsworth-Coyle basis [4] the
condition numbers grow exponentially vs. order of approximation for both the original and
diagonally normalized mass matrices. In contrast, the new bases have a perfect condition
number of one.
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Fig. 2 Two-dimensional case: condition numbers of the stiffness matrices: original (left) and diagonally
normalized (right)

Fig. 3 Three-dimensional case: condition numbers of the mass matrices: original (left) and diagonally nor-
malized (right)

Similarly, from Figs. 2 and 4 one concludes that for the Ainsworth-Coyle basis [4] the
condition numbers grow exponentially vs. order of approximation for both the original and
diagonally normalized stiffness matrices. For the new bases, the condition numbers grow
linearly vs. order of approximation. Since the diagonally normalized stiffness matrices are
well conditioned and the condition numbers of which are rather small, we concentrate on
the study of the growth rate of the original un-normalized stiffness matrices.

From Figs. 2 and 4, and on a logarithmic scale, the condition number κd grows linearly
vs. order of approximation p

logκd(p) ≈ μ + ν logp, d = 2, 3. (17)

From the figures in Tables 1 and 3, asymptotically one can compute the growth rate. For the
bases in two and three dimensions, qualitatively one finds such a relation

κd(p) ≈ λd p3, d = 2, 3, (18)

where the constant λd = 10μ is independent of the order of approximation p. So the condi-
tion number grows on the order of O(p3), i.e., a cubic growth with order of approximation
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Fig. 4 Three-dimensional case: condition numbers of the stiffness matrices: original (left) and diagonally
normalized (right)

and independent of approximation dimension. For the moment a rigorous proof of this as-
sertion still lacks. In this aspect, we should mention the work by Hu and collaborators [14]
on establishing the bounds of the condition numbers from the bases for the H1-conforming
finite elements, and the similar work by Ainsworth and Coyle [3] for the Nédélec elements.
The shape functions in both works [3, 14] are essentially constructed by the tensor product
of Legendre polynomials for rectangular elements, whereas in our case, the shape functions
are constructed via the non-degenerate Jacobi polynomials for the simplicial elements.

The scaling constant λd is different in each dimension and we find λ2 ≈ 1.18 and λ3 ≈
1.68. So quantitatively we establish the relation between the condition number κd of the
original un-normalized stiffness matrix S and the order of approximation p

κ2(p) ≈ 1.18p3, for two dimensions, (19a)

κ3(p) ≈ 1.68p3, for three dimensions. (19b)

The difference between the two scaling coefficients λ3 and λ2 is about 1
2 . It might be a

coincidence for such a difference.

3.2 Conditioning of the Composite Matrix ζM + S

In reality after discretization with the DG method, one needs to solve a linear system which
involves the following composite matrix as a building block

K(M,S; ζ ) := ζM + S, ζ > 0. (20)

We study the conditioning of the composite matrix K for a few different values of the param-
eter ζ , viz., ζ = {0.01,1,100}. For the two- and three-dimensional bases, the comparison
results are recorded in Tables 5–10. The two columns with the common heading ‘Ratio’ list
the ratio of the condition numbers from the bases by Ainsworth and Coyle [4] and from our
newly derived bases.

Upon a careful examination of the figures in Tables 5–10, several observations are in
place.

• For all values of the parameter ζ studied and, for both the newly derived two- and three-
dimensional bases, the diagonally normalized composite matrix K̃(M,S; ζ ) is well con-
ditioned for all orders of approximation up to p = 10. Moreover, the condition number
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Table 5 Two-dimensional case: condition numbers of the composite matrix: original K(M,S; ζ ) and nor-
malized K̃(M,S; ζ ) from the new basis and the basis in [4], denoted ‘A-C’, where ζ = 0.01

Order Original Normalized Ratio

p New A-C New A-C Original Normal.

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 3.601e03 9.003e02 2.617e00 8.995e00 2.500e-1 3.437e00

2 1.571e04 1.259e03 4.793e00 2.783e01 8.014e-2 5.806e00

3 4.004e04 1.964e03 6.890e00 2.019e02 4.905e-2 2.930e01

4 8.531e04 3.323e03 1.124e01 1.917e03 3.895e-2 1.706e02

5 1.605e05 3.652e04 1.618e01 2.168e04 2.275e-1 1.340e03

6 2.782e05 5.007e05 2.280e01 3.093e05 1.800e00 1.357e04

7 4.510e05 7.353e06 3.086e01 4.347e06 1.630e01 1.409e05

8 6.957e05 1.161e08 4.057e01 7.065e07 1.669e02 1.741e06

9 1.028e06 1.931e09 5.207e01 1.151e09 1.878e03 2.210e07

10 1.470e06 3.433e10 6.529e01 2.022e10 2.335e04 3.097e08

Table 6 Two-dimensional case: condition numbers of the composite matrix: original K(M,S; ζ ) and nor-
malized K̃(M,S; ζ ) from the new basis and the basis in [4], denoted ‘A-C’, where ζ = 1

Order Original Normalized Ratio

p New A-C New A-C Original Normal.

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 3.700e01 9.25e00 2.498e00 8.538e00 2.500e-1 3.418e00

2 1.581e02 4.926e01 4.596e00 2.782e01 3.116e-1 6.053e00

3 4.014e02 3.245e02 6.629e00 2.025e02 8.084e-1 3.055e01

4 8.541e02 3.108e03 1.088e01 1.926e03 3.639e00 1.770e02

5 1.606e03 3.639e04 1.583e01 2.176e04 2.266e01 1.375e03

6 2.783e03 4.993e05 2.239e01 3.107e05 1.794e02 1.388e04

7 4.511e03 7.336e06 3.045e01 4.368e06 1.626e03 1.434e05

8 6.958e03 1.159e08 4.014e01 7.101e07 1.666e04 1.769e06

9 1.029e04 1.928e09 5.162e01 1.157e09 1.874e05 2.241e07

10 1.470e04 3.431e10 6.483e01 2.032e10 2.334e06 3.134e08

κ(K̃) decreases with the increase of the parameter ζ for each order of approximation,
which is understandable since the mass matrix M is perfectly conditioned with a condi-
tion number of one.

• For each fixed value of the parameter ζ , and for both the newly derived two- and three-
dimensional bases, the condition number of the original un-normalized composite matrix
K(M,S; ζ ) grows mildly with the approximation order p. Furthermore, for each order
of approximation, the condition number κ(K) reduces roughly by an order with a tenfold
increase in the parameter ζ .

• For a fixed value of the parameter ζ and for a particular order of approximation, the con-
dition number with the newly constructed three-dimensional basis is a little larger than
its corresponding one with the two-dimensional basis, which holds for both the diago-
nally normalized composite matrix K̃ and the original un-normalized matrix K . Such a
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Table 7 Two-dimensional case: condition numbers of the composite matrix: original K(M,S; ζ ) and nor-
malized K̃(M,S; ζ ) from the new basis and the basis in [4], denoted ‘A-C’, where ζ = 100

Order Original Normalized Ratio

p New A-C New A-C Original Normal.

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 1.360e00 1.071e01 1.183e00 3.643e00 7.875e00 3.079e00

2 2.571e00 1.347e02 1.725e00 3.407e01 5.239e01 1.975e01

3 5.004e00 9.820e02 2.704e00 2.518e02 1.962e02 9.312e01

4 9.531e00 8.857e03 4.320e00 2.770e03 9.293e02 6.412e02

5 1.705e01 8.764e04 6.877e00 2.850e04 5.140e03 4.144e03

6 2.882e01 1.004e06 1.079e01 4.141e05 3.484e04 3.838e04

7 4.610e01 1.250e07 1.612e01 5.777e06 2.711e05 3.584e05

8 7.057e01 1.692e08 2.308e01 9.709e07 2.398e06 4.207e06

9 1.038e02 2.517e09 3.179e01 1.689e09 2.425e07 5.313e07

10 1.480e02 3.880e10 4.240e01 2.867e10 2.622e08 6.762e08

Table 8 Three-dimensional case: condition numbers of the composite matrix: original K(M,S; ζ ) and nor-
malized K̃(M,S; ζ ) from the new basis and the basis in [4], denoted ‘A-C’, where ζ = 0.01

Order Original Normalized Ratio

p New A-C New A-C Original Normal.

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 8.001e03 1.600e03 3.910e00 1.599e01 2.000e-1 4.090e00

2 3.145e04 1.614e03 9.456e00 6.593e01 5.132e-2 6.972e00

3 7.823e04 4.778e03 1.355e01 1.393e03 6.108e-2 1.028e02

4 1.616e05 5.104e04 2.019e01 1.812e04 3.158e-1 8.975e02

5 2.979e05 1.462e06 2.853e01 4.181e05 4.908e00 1.465e04

6 5.062e05 2.562e07 3.909e01 9.837e06 5.061e01 2.517e05

7 8.084e05 7.102e08 5.174e01 2.596e08 8.785e02 5.017e06

8 1.229e06 1.675e10 6.674e01 7.698e09 1.363e04 1.153e08

9 1.797e06 5.074e11 8.415e01 2.051e11 2.824e05 2.437e09

10 2.541e06 1.332e13 1.042e02 6.403e12 5.242e06 6.145e10

fact resonates with the common agreement that three-dimensional problems are generally
harder to solve than two-dimensional ones. We are short of the definite reason for this
fact. However, a phenomenological explanation is due to the dimensional difference.

• As a performance comparison with the bases by Ainsworth and Coyle [4], the new bases
have a better conditioning for the diagonally normalized composite matrix K̃ for each
order of approximation and for all values of the parameter ζ in this study. The higher
the order of approximation, the more striking difference between the two sets of bases.
For example, with the modest order p = 5 and ζ = 0.01, the ratios are 1.340 × 103 and
1.465 × 104 for the two- and three-dimensional bases, respectively, and with the higher
order p = 10 and ζ = 100, the ratios increase to 6.762 × 108 and 1.576 × 1011 for the
two- and three-dimensional bases, respectively.
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Table 9 Three-dimensional case: condition numbers of the composite matrix: original K(M,S; ζ ) and nor-
malized K̃(M,S; ζ ) from the new basis and the basis in [4], denoted ‘A-C’, where ζ = 1

Order Original Normalized Ratio

p New A-C New A-C Original Normal.

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 8.100e01 1.620e01 3.770e00 1.543e01 2.000e-1 4.093e00

2 3.155e02 1.205e02 9.047e00 6.494e01 3.819e-1 7.178e00

3 7.833e02 4.741e03 1.323e01 1.390e03 6.053e00 1.051e02

4 1.617e03 5.120e04 1.963e01 1.811e04 3.166e01 9.226e02

5 2.980e03 1.467e06 2.804e01 4.195e05 4.923e02 1.496e04

6 5.063e03 2.569e07 3.855e01 9.992e06 5.074e03 2.592e05

7 8.085e03 7.122e08 5.120e01 2.608e08 8.809e04 5.094e06

8 1.229e04 1.679e10 6.618e01 7.787e09 1.366e06 1.177e08

9 1.797e04 5.086e11 8.358e01 2.060e11 2.830e07 2.465e09

10 2.541e04 1.335e13 1.036e02 6.460e12 5.254e08 6.236e10

Table 10 Three-dimensional case: condition numbers of the composite matrix: original K(M,S; ζ ) and
normalized K̃(M,S; ζ ) from the new basis and the basis in [4], denoted ‘A-C’, where ζ = 100

Order Original Normalized Ratio

p New A-C New A-C Original Normal.

0 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00 1.000e00

1 1.800e00 1.667e01 1.480e00 6.000e00 9.261e00 4.054e00

2 4.145e00 4.447e02 2.728e00 1.500e02 1.073e02 5.499e01

3 8.823e00 1.218e04 4.998e00 1.463e03 1.380e03 2.927e02

4 1.716e01 1.625e05 8.416e00 3.806e04 9.470e03 4.522e03

5 3.079e01 3.519e06 1.305e01 6.230e05 1.143e05 4.774e04

6 5.162e01 6.299e07 1.986e01 2.089e07 1.220e06 1.052e06

7 8.184e01 1.525e09 2.897e01 3.727e08 1.863e07 1.287e07

8 1.239e02 3.604e10 4.050e01 1.459e10 2.909e08 3.602e08

9 1.807e02 9.959e11 5.458e01 3.109e11 5.511e09 5.696e09

10 2.551e02 2.627e13 7.144e01 1.126e13 1.030e11 1.576e11

• For the Ainsworth and Coyle bases [4], as with each component study on the mass and
stiffness matrices, the condition number of the composite matrix K and of the diagonally
normalized matrix K̃ grows exponentially with the order of approximation for each spe-
cific value of the parameter ζ considered. We refrain from further comments on the ‘A-C’
bases [4].

4 Discussion and Conclusion

New orthonormal hierarchical bases for simplicial L2-conforming elements in two and three
dimensions have been proposed with the goal of improving the conditioning of the mass and
stiffness matrices. The basis functions are orthonormal in L2 norm over the reference ele-
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ments, and are given explicitly by the formula (8). The construction of the new basis is mo-
tivated by the study of orthogonal polynomials of several variables [13] over an n-simplex.
This is achieved by appropriately exploiting classical Jacobi polynomials over simplicial
elements.

On the reference element the mass matrix is an identity matrix, thus, is perfectly condi-
tioned with a condition number of one. In contrast, the condition number of the Ainsworth-
Coyle bases [4] grows exponentially. For both the original and diagonally normalized mass
matrices, in terms of matrix conditioning and starting from order four of approximation, the
bases in this study are at least three and five orders better than the bases in [4] for two and
three dimensions, respectively.

The conditioning of the original un-normalized stiffness matrix follows a cubic law, viz.,
the condition number grows cubically vs. order of approximation, and is independent of
dimension. To the best of our knowledge, such facts have never been established before.
The latter fact of dimension-independence comes as a surprise. Furthermore, the diagonally
normalized stiffness matrix is well conditioned. As a comparison, for the bases proposed by
Ainsworth and Coyle [4], the condition number of the stiffness matrices grows exponentially
vs. order of approximation. In particular, for both the original and diagonally normalized
stiffness matrices, in terms of matrix conditioning and starting from order six of approxima-
tion, the proposed bases are at least three and four orders better than the bases in [4] for two
and three dimensions, respectively.

The conditioning of the composite matrix K(M,S; ζ ) = ζM +S has also been studied in
terms of several distinct values of the parameter ζ which has the dynamical range of 104. It
is found that the diagonally normalized composite matrix K̃ is well conditioned. Moreover,
starting from order five of approximation and with all the values of the parameter ζ studied,
the new bases are at least three and four orders better than the bases in [4] for two and three
dimensions, respectively. The higher the order of approximation, the greater the advantage
of the proposed new bases, which rightfully fulfill the goal of hierarchical bases.
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Appendix: Proof of Theorem 2.1

To prove Theorem 2.1, we first establish a lemma.

Lemma A.1 For the integral of a scalar function f (x) ∈ L1(K
n), the following holds

I (Kn)[f (x)] :=
∫

Kn

f (x)dx (21)

=
∫

Kn−1

(∫ 1−|xn−1|

0
f (xn−1, (1 − |xn−1|)s) ds

)
· (1 − |xn−1|) · dxn−1. (22)

Proof By definition we have

I (Kn)[f (x)] :=
∫ 1

0
dx1

∫ 1−x1

0
dx2 · · ·

∫ 1−x1−···−xn−1

0
f (x1, . . . , xn−1, xn)dxn (23a)
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=
∫ 1

0
dx1

∫ 1−x1

0
dx2 · · ·

∫ 1−|xn−1|

0
f (xn−1, (1 − |xn−1|)s) ds · (1 − |xn−1|)

(23b)

=
∫

Kn−1

(∫ 1−|xn−1|

0
f (xn−1, (1 − |xn−1|)s) ds

)
· (1 − |xn−1|) · dxn−1. (23c)

�

The substitution xn = (1 − |xn−1|)s has been used in the proof. A formal proof of Theo-
rem 2.1 follows.

Proof It is clear and easy to show that the polynomials P�α(W
(Kn)

�τ ;x) are pairwise orthogonal

with respect to the weight function W
(Kn)

�τ (x), thus, the proof is omitted. We need to show

the normality property of the orthogonal polynomials P�α(W
(Kn)

�τ ;x). Using the Lemma A.1
repeatedly we can reduce the integral on Kn to a multiple of n integrals of a single variable.
In specific, we have∫

Kn

W
(Kn)

�τ (x)
[
P�α

(
W

(Kn)

�τ ;x
)]2

dx (24a)

=
[
h

(Kn)

�α
]−2 n∏

i=1

∫ 1

0
(1 − s)ρ1

i sρ2
i

[
p

(ρ1
i
,ρ2

i
)

αi (2s − 1)

]2

ds (24b)

=
[
h

(Kn)

�α
]−2 n∏

i=1

1

2ρ1
i
+ρ2

i
+1

∫ 1

−1
(1 − σ)ρ1

i (1 + σ)ρ2
i

[
p

(ρ1
i
,ρ2

i
)

αi (σ )

]2

dσ (24c)

=
[
h

(Kn)

�α
]−2 n∏

i=1

1

2ρ1
i
+ρ2

i
+1

× 1 (24d)

= 1. (24e)

�

The change of variable s = xi

1−|xi−1| has been used in the second line (24b) for i =
1,2, . . . , n. A further change of variable σ = 2s − 1 has been applied in the third line (24c).
The fourth line (24d) is obtained by the orthonormal property of the classical Jacobi poly-
nomials of one variable [18]. And the last line is true in view of the formula [h(Kn)

�α ]−2 given
in (7b).
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