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 Abstract

 A partially orthonormal basis is constructed with better conditioning properties for
 tetrahedral K (curl) -conforming Nédélec elements. The shape functions are classified into
 several categories with respect to their topological entities on the reference 3-simplex. The
 basis functions in each category are constructed to achieve maximum orthogonality. The
 numerical study on the matrix conditioning shows that for the mass and quasi-stiffness
 matrices, and in a logarithmic scale the condition number grows linearly vs. order of
 approximation up to order three. For each order of approximation, the condition number
 of the quasi-stiffness matrix is about one order less than the corresponding one for the mass

 matrix. Also, up to order six of approximation the conditioning of the mass and quasi-
 stiffness matrices with the proposed basis is better than the corresponding one with the
 Ainsworth-Coyle basis Internat. J. Numer. Methods. Engrg., 58:2103-2130, 2003. except
 for order four with the quasi-stiffness matrix. Moreover, with the new basis the composite
 matrix pM + S has better conditioning than the Ainsworth-Coyle basis for a wide range
 of the parameter p.

 Mathematics subject classification: 65N30, 65F35, 65F15.
 Key words: Hierarchical bases, Tetrahedral %(curl)-conforming elements, Matrix condi-
 tioning.

 1. Introduction

 The Nédélec elements [20] are the natural choices when problems in electromagnetism are
 solved by the conforming finite element methods. Hierarchical bases are more convenient to
 use when the p-refinement technique is applied with the finite element methods [7]. Webb [28]
 constructed hierarchical vector bases of arbitrary order for triangular and tetrahedral finite
 elements. It was shown [12] that the basis functions in [28] indeed span the true Nédélec space
 defined in [20]. A basis in terms of the affine coordinates was also given [12]. Inspired by
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 On the Construction of Well-Conditioned Hierarchical Bases 527

 Nédélec's foundational work [20] and following Webb [28], many researchers had constructed
 various hierarchical bases for several commonly known elements in 2D and 3D [1,3-5,15,16,21,
 25,27]. From the perspective of differential forms, Hiptmair [13] laid a general framework for
 canonical construction of 7i(cur')- and W(div)-conforming finite elements. In this respect, the
 reader is referred to the works [14,22-24] and the monograph [9].

 One problem with hierarchical bases is the matrix ill-conditioning when higher-order bases

 are applied [2,28,31,32]. For a hierarchical basis to be useful, the issue of ill-conditioning has
 to be resolved. Using Gram-Schmidt orthogonalization procedure Webb [28] gave the explicit
 formulas of the basis functions up to order three for triangular and tetrahedral elements. Follow-

 ing the same line of development [28], i.e., decomposing the basis functions into rotational and
 irrotational groups, Sun and collaborators [27] investigated the conditioning issue more care-
 fully and also gave the basis functions up to the third order. Ainsworth and Coy le [3] studied
 both the dispersive and conditioning issues for the hierarchical basis on the hybrid quadrilat-
 eral/triangular meshes. With the aid of Jacobi polynomials, the interior bubble functions are
 made orthogonal over an equilateral reference triangle [3]. With this partial orthogonality it
 was shown that the condition numbers of both the mass matrix and the stiffness matrix could

 be reduced significantly [3]. Using Legendre polynomials Jprgensen et al. constructed a near-
 orthogonal basis for the quadrilaterals and suggested that the same procedure could be applied
 for the triangles with the help of collapsed coordinate system [17]. Partially addressing the
 conditioning issue, Schöberl and Zaglmayr [25] created bases for high-order Nédélec elements
 with the property of local complete sequence. The key components in their construction [25]
 are using (i) the gradients of scalar basis functions and, (ii) scaled and integrated Legendre
 polynomials. However, the ill-conditioning issue was pronounced with higher-order approxi-
 mation and moderate growth of the condition number was reported [25]. A new hierarchical
 basis with uncommon orthogonality properties was constructed by Ingelström [15] for tetrahe-
 dral meshes. It is shown that higher-order basis functions vanished if they were projected onto
 the relatively lower-order ?ť(curl)-conforming spaces [15] using the Nédélec interpolation opera-
 tor [20], and [15] such a basis was well suited for multi-level solvers. Using the orthogonalization

 procedure by Shreshevskii [26] and conforming to the Nédélec [20] condition, Abdul-Rahman
 and Kasper proposed a new hierarchical basis for the tetrahedral element [1].

 The Gram-Schmidt scheme used by Webb [28] or the orthogonalization method applied
 by Abdul-Rahman and Kasper [1] involves a linear system of equations to be solved, and
 the coefficients associated with the basis functions in general cannot be expressed in closed
 forms. The focus of the current work is to investigate the possibility of constructing a well-
 conditioned hierarchical basis for the tetrahedral W(curl)-conforming elements without recourse
 to the Gram-Schmidt orthogonalization. The construction is made possible by the results of
 orthogonal polynomials of several variables on an n-simplex [11]. The basis functions of any
 approximation order are given explicitly in closed form. Our work is based upon the studies by
 Ainsworth and Coyle [5], and by Schöberl and Zaglmayr [25]. The main goal of this study is
 to try to resolve the conditioning issue or at least partially, which was missed in the study by
 Ainsworth and Coyle [5].

 The rest of this paper is organized as follows. The construction of basis functions is given
 in Section 2. Numerical results of matrix conditioning and sparsity are shown in Section 3.
 Concluding remarks are included in Section 4.
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 528 J. XIN, N. GUO AND W. CAI

 2. Construction of Basis Functions

 We construct basis functions for the ^(cur^-conforming elements on the reference 3-
 simplex. The construction is based upon the work [5,25,30].

 2.1. Preliminary Results

 Let Kn be the simplex in Mn, i.e.,

 Kn := ļx G Mn : 0 < < lļ . (2.1)
 The notation |x| means the discrete tl norm for a generic point x G Kn , i.e.,

 1*1 = ¿W- (2-2)
 2=1

 Denote x¿ the truncation or projection of the point x in the first ¿-dimensions, viz.,

 x0 := 0, x¿ := (xi,x2, • • • ,£*), 1 < i < n. (2.3)

 For a point a G NJ, denote a1 the truncation or projection of the point a from the ¿-th
 dimension, i.e.,

 a1 := (ai,a¿+i, • • • ,an), 1 < i < n. (2.4)

 For a point f G Rn+1, the notation r1 is similarly defined as in <?, viz.,

 T1 := (tí,t¿+i,--- ,r„+i), 1 < i < n+ 1. (2.5)

 It is shown [11] that the weight function associated with the classic orthogonal polynomials on
 Kn takes the form

 71 .

 wfn)(x) = (l-|x|r^-i]>r*. xeKn, Ti > ¿ = 1,2,-" ,n + l. (2.6)
 2=1

 The basis functions are constructed with the aid of the following theorem on orthogonal
 polynomials over an n-simplex Kn [11].

 Theorem 2.1. The polynomials

 Ps(wr'*) = KVn (to - 0 • <"•»
 / 1 2'

 where p¿ * 1 is the classic orthonormal Jacobi polynomials of one variable ,

 Pi = žK"1"1! + Ir4"1"1! + l(n - i - 1), PÌ = Ti- ļ,
 / jrn'

 are orthonormal , the normalization constant hKã ' is given by

 [4*T2=n2^-+1' (2-7b)
 2=1

 and the weight function takes the form in Eq. (2.6).

 The proof of Theorem 2.1 can be found in [11]. However, the normalization constant h ^
 given in [11] is wrong, which has been corrected by formula (2.7b). For details, please refer
 to [30].
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 On the Construction of Well-Conditioned Hierarchical Bases 529

 2.2. Construction on the 3-simplex

 Using the result in Theorem 2.1, we construct shape functions for the % (curl) -conforming
 element. The shape functions are grouped into several categories based upon their topolog-
 ical entities on the reference 3-simplex. If possible, the basis functions in each category are
 constructed so that they are orthonormal on the reference element.

 Any point in the 3-simplex is uniquely located in terms of the local coordinate system
 (£, 77, £). The Vertexes are numbered as vo(0, 0, 0), vi(l, 0, 0), V2(0, 1,0), V3(0, 0, 1). The barycen-
 tric coordinates are given as

 Ao = 1 - £ - 77 - C, Ai = £, A2 = 77, A3 = C- (2.8)

 The directed tangent on a generic edge ej = [71,^2] is defined as

 Te¡ Tbu32] = Vj2 _ Vji j j1 < (2.9)
 The edge is parametrized as

 Tej := A j2 - A j1, ji < J2- (2.10)

 2.2.1. Edge functions

 A generic edge can be uniquely identified with

 ej = 'ji,32], ji = 0, 1, 2, ji < j2 <3, j = ji + j2 + sgn(j'i). (2.11)
 Lowest order:

 The shape functions for the lowest order, also called the Whitney element [9,29], are given as

 = 're> I (A^VA^ - 'nV'n) . (2.12)

 The tangential component of the function 4>gJ on its associated edge is unit and vanishes on
 other five edges, viz., it has the property

 efc-(«?)=Äifc, {j,fc} = 1,...,6. (2.13)
 where Sjk is the Kronecker delta. Further, the shape functions are divergence- free, viz.,

 V • &Qj = 0, j = ,6. (2.14)

 Higher order:

 The shape functions for higher-order of approximation are constructed so that they are curl-free.

 The explicit formula is given by

 J = !,•••, 6. (2.15)

 In addition to the curl- free property of these functions, viz.,

 Vx^=û, i = j = l,-..,6, (2.16)
 the trace of which on the associated edge is orthonormal, viz.,

 =iifc, {i,fe} = l|...,p, j = 1, ,6. (2.17)

 Property (2.16) follows from the fact that the shape function can be written as the gradient
 of a certain function. Property (2.17) can be proved by the orthogonality of the Legendre
 polynomials.
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 530 J. XIN, N. GUO AND W. CAI

 2.2.2. Face functions

 Each face on the 3-simplex is uniquely defined as

 fji = 'j2,j3,j4k], 0 < {ji, j2i js, ,74 } < 3, j2 < J3 < H- (2.18)

 The face functions are further grouped into two categories [5] - edge-based face functions and
 face bubble functions.

 Edge-based face functions:

 These functions are associated with the three edges of a certain face f^, and have non-zero
 tangential components only on the associated face f^. Using the results in Theorem 2.1, the
 orthonormal shape functions are give as

 - ***• (i?fc - ') <"*>
 where

 Ci = (i + 3,;i?i±i 0 < i < p - 2, (2.19b)
 kl = {Í2 , } , k2 = {j/3, ji}, h < k2, k3 = {j2,Ì3,Ì4} ' {ki,k2}. (2.19c)

 In the formula (2.19a), the function P^1,2' (.) is the classic un-normalized Jacobi polynomial of
 degree i with a single variable [19]. Again, by the results in Theorem 2.1, one can prove the
 orthonormal property of edge-based face functions

 (♦^•«•♦Xw)!*.-*"". <»>.>•}= 0,1, -,P- 2. (2.20)

 Face bubble functions:

 The face bubble functions, which belong to each specific set and are associated with a particular

 face fj1 , vanish on all other three faces. In view of the results in Theorem 2.1, the explicit formula
 is given as

 ¿rk'n = T(1 - Aj2)m(l - 'j2 - A j3)n

 * ^3'2' (ñfc - 0 (d^x- - ') pÈSî- <2-21*>
 = T(1 - Aj2)m(l - Aja - Aj3)n

 x ^ p,o.2) (2,21b)

 where

 T = C%lC%2'hXj3'j4, (2.21c)
 C™'1 = yj (2 tí -|- -h tí + 3)(?7i + 2ti + 2n + 5), (2.21d)

 2 = y/(2 m + 2 n + 7)(2m + 2n + 8)(2m + 2n + 9)
 m '/(m + 1 )(m + 2)
 0 < {m,n},m + n < p - 3. (2.21f)
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 On the Construction of Well- Conditioned Hierarchical Bases 531

 The face bubble functions again share the orthonormal property on the reference 3-simplex

 / djfjl 'J3 d>fil 'J'3 ' - - Â U Â
 711 j ^7712,712 j ^ - - U Tn'Tn2U TllUļ 5

 0 < {mi,m2,ni,n2},mi + ni,ra2 + ri2 <p - 3, (2.22a)

 / d>fji J4 Afjl 'J4 ' - ~ S Um' ñ
 ^^7711,7115^7712,722 J ^ - ~ Um' 7712 ü7ll 712 5

 0 < {mi,m2,ni,n2},mi + ni,m2 + n2 < p - 3. (2.22b)

 2.2.3. Interior functions

 The interior functions are also classified into two categories: face-based interior functions and
 interior bubble functions.

 Face-based interior functions:

 The face-based interior functions which are associated with a particular face have non-zero
 normal components only on the associated face, and have no contribution to the tangential
 components on all four faces. Utilizing the results in Theorem 2.1, the formulas of these
 functions are given as

 =T(1-Aj2r(l-Aj2-Aj3r

 * pS"w' {ñ- - 0 ** (d^ - 0 ^ <"*>
 where

 T = Cm' 1 Cm 2 A J2 A Xj4 , (2.23b)
 0 < {ra, n}, m + n < p - 3. (2.23c)

 The face-based interior functions enjoy the orthonormal property on the reference 3-simplex

 ,7ll j ^7712 ,712 ^ ^771 1 7712 ^77 1 712 '  0< {mi,m2,ni,n2},mi-hni,m2H-n2 < p- 3. (2.24)

 Interior bubble functions:

 The interior bubble functions have both vanishing tangential and normal components on all four

 faces of the reference 3-simplex. Similarly, by using the results in Theorem 2.1, the formulas of

 these functions are given as

 *£m,n = m+2n+8'2) (2Aļ - 1)

 X (i^ - 0 (T ^ - ') «" (2'25a)
 where

 9 = Q,ro,7lAoA1A2A3(l - Ai)m(l - Ax - A2)n, (2.25b)
 C^,77i,7i = (2.25c)

 _ I (£ + 2 ra 4- 2n + 9)(¿ + 2m + 2n + 10)(2£ + 2m + 2n + 11 )(m + 2n + 6) OCJ>i
 *'m'n _ ~ V (*+l)(ra + l)(n+l) ' (2,25d) OCJ>i
 ^2 _ /(ni + 2n 4- 7)(2m + 2n H- 8)(n + 3)(n + 4)(2n + 5) oc ^
 *'m'n _ " y (^ + 2)(m + 2)(n + 2) ' 1 oc ^ j

 0 < {£, ra, n}, i + m + n < p - 4, d = 1, 2, 3. (2.25f)
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 532 J. XIN, N. GUO AND W. CAI

 Again, one can show the orthonormal property of the interior bubble functions

 (**&!, (2.26a)
 where

 0 < {¿i, ¿2, miìm2,niì n2}, l' + mi + ni,¿2 + m2 + n2 < p - 4, {di,d2} = 1,2,3. (2.26b)

 Following the same manner as in [5], it can be shown that the newly constructed basis
 is indeed a hierarchical one for tetrahedral 7^(curl)-conforming elements. The global basis
 functions for a physical element can be constructed through a covariant transformation [5].

 3. Conditioning and Sparsity of Matrices

 As in [3], we check the conditioning of the mass M, quasi-stiffness S matrices and their
 composite K(p; M, S) on the reference element. The components of each matrix are defined as

 Mi,j := &i,j := X X $j)|^.3. (3-1)
 Both the mass and quasi-stiffness matrices have particular sparsity structure due to the unique
 construction of the basis.

 3.1. The Case of the Mass and Quasi-stiffness Matrices

 3.1.1. Sparsity of the matrices

 We first study the sparsity of the mass and quasi-stiffness matrices for each approximation order.

 We calculate the percentage of nonzero entries in each particular matrix. As a performance
 comparison with the basis by Ainsworth and Coyle [5], we also record the calculation from their
 basis. The comparison result is listed in Table 3.1, where the last two columns keep record of the

 ratios of the percentage between the Ainsworth-Coyle basis and the newly constructed basis.
 Some observations can be made from Table 3.1. For the lowest order p = 0, the performance

 of the two bases is the same. For the approximation order p = {1, 2, 3, 5, 6}, the mass matrix is
 relatively more sparse with the new basis. For the approximation order p = 4, the mass matrix
 from the Ainsworth-Coyle basis [5] is a little more sparse - with 0.24% more sparsity. For the
 approximation order p= {2, 3, 4, 5}, the quasi-stiffness matrix is relatively more sparse with the
 new basis, and the performance is the same with order p= 1. For the approximation order p = 6,

 Table 3.1: Sparsity of the mass matrix M and quasi-stiffness matrix S from the new basis and the basis
 in [5], denoted 'A-C'.

 Order Mass Quasi-stiffness Ratio
 p New A-C New A-C Mass Q.-S.
 Õ 50.00% 50.00% 66.67% 66.67% 1.000 1.000
 1 54.17% 79.17% 16.67% 16.67% 1.462 1.000

 2 67.33% 78.00% 24.67% 44.67% 1.158 1.811

 3 61.11% 66.17% 36.11% 48.11% 1.083 1.332

 4 57.68% 57.44% 48.01% 52.35% 0.996 1.090

 5 51.02% 55.80% 56.09% 57.69% 1.094 1.029

 ~ 6 46.01% 1 53.87% 63.22% 56.25% 1.171 0.890
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 On the Construction of Well- Conditioned Hierarchical Bases 533

 Fig. 3.1. Sparsity profiles of the mass matrices from the new basis (top) and the basis in [5] (bottom):
 p = 3 (left) and p = 5 (right).

 Fig. 3.2. Sparsity profiles of the quasi-stiffness matrices from the new basis (top) and the basis in [5]
 (bottom): p = 3 (left) and p = 5 (right).
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 534 J. XIN, N. GUO AND W. CAI

 the quasi-stiffness matrix from the Ainsworth-Coyle basis [5] is more sparse. Starting from order
 p = 2 and with the new basis, the mass matrix becomes more sparse as the approximation order
 p increases. The sparsity trend is just opposite for the quasi-stiffness matrix. Starting from
 order p = 1, the matrix is relatively denser with the increase of approximation order.
 In Figs. 3.1 and 3.2 we respectively show the sparsity profiles of the mass and quasi-stiffness

 matrices for the approximation orders p = 3 and p = 5.

 3.1.2. Condition numbers of the matrices

 The mass matrix M is real, symmetric and positive definite, and thus its eigenvalues are all
 positive. The quasi-stiffness matrix S is real, symmetric and semi-positive definite, and therefore

 has non-negative eigenvalues.
 The condition number of a matrix A is calculated by the formula

 ' max

 *(¿) = T- , (3-2)
 ^min

 where Amax and Amin are the maximum and minimum eigenvalues of the matrix A, respectively.

 For the quasi-stiffness matrix 5, only positive eigenvalues are considered. The condition num-
 bers of the mass and quasi-stiffness matrices are shown in Table 3.2. As a comparison, the
 condition numbers generated with the basis by Ainsworth and Coy le [5] are also recorded. The
 ratios of the condition numbers between the A-C basis [5] and the new basis are shown in the
 table as well.

 Table 3.2: Condition numbers of the mass matrix M and quasi-stiffness matrix S from the new basis
 and the basis in [5], denoted 'A-C'.

 Order Mass Quasi-stiffness Ratio
 p New A-C New A-C Mass Q.-S.
 Õ 5.000e00 l.OOOeOl 2.500e0 4.000e0 2.000e0 1.600e0
 1 2.227e01 5.741e01 2.500e0 4.000e0 2.578e0 1.600e0

 2 2.571e03 4.162e03 1.630e2 2.803e2 1.618e0 1.720e0

 3 2.028e04 2.467e05 9.701e2 2.059e3 1.216el 2.122e0

 4 2.790e05 1.852e07 3.745e4 3.260e4 6.638el 0.870e0

 5 4.073e07 6.329e08 1.171e6 7.716e7 1.554el 6.589el

 6

 From Table 3.2 several observations on the conditioning for the mass and quasi-stiffness
 matrices can be made.

 • For the mass matrix M and for each order of approximation, the condition number from
 the new basis is always lower than the corresponding one from the basis by Ainsworth
 and Coyle [5]. Indeed for the orders p = 3, p = 4, and p = 5, the new basis is at least one
 order better in terms of matrix conditioning with the most striking case for p = 4.

 • For the quasi-stiffness matrix 5, with the exception for order p = 4, for which the condition
 numbers from both bases are very close to each other, the condition number from the new

 basis is lower than the corresponding one from the Ainsworth-Coyle (A-C) basis [5]. The
 most pronounced case is with the order of approximation p = 6, for which the proposed
 basis is at least two orders better than the A-C basis [5] in terms of matrix conditioning.
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 On the Construction of Well- Conditioned Hierarchical Bases 535

 • For both bases, the conditioning of the mass matrix is more severe than the quasi-stiffness
 matrix.

 In order to see the trend of the growth with the condition numbers for both matrices, we
 plot the condition numbers vs. the order of approximation on a logarithmic scale. The results
 are shown in Figs. 3.3 and 3.4 for the mass and quasi-stiffness matrices, respectively.

 From Fig. 3.3 and for both bases, the condition number increases super-lineaily vs. order
 of approximation on a logarithmic scale. For the newly constructed basis and for the first
 three orders of approximation shown in Fig. 3.3, the condition number grows linearly vs. order
 of approximation; and starting from order four (4), the condition number begins to increase
 super-lineaily. By examining the trend shown in Fig. 3.3 and data in Table 3.2, one concludes
 that there is no reason to apply a high-order basis which is beyond order six (6). For the later
 case, the numerical result with such a high-order basis does not seem to be trust-able due to
 the consideration of matrix conditioning. In fact, with the new basis and for order p = 7, the
 condition number of the mass matrix has increased up to 1.534 x 1012. It is noted the theoretical

 results [4] on the condition numbers cannot be applied to this study since they are intended for
 the quadrilateral and hexahedral elements.

 Fig. 3.3. Condition numbers of the mass matrices.

 Fig. 3.4. Condition numbers of the quasi-stiffness matrices.
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 536 J. XIN, N. GUO AND W. CAI

 Similar remarks can be made for the quasi-stiffness matrices. Prom Fig. 3.4 and for the two
 bases, the condition number grows super-lineaily vs. order of approximation on a logarithmic
 scale. For the new basis, the curve in Fig. 3.4 seems to be connected by two straight lines
 with the common point for the order of approximation p = 3. Again, it is not advised to use
 a relatively higher-order basis, e.g., beyond order six in view of the matrix conditioning. The
 growth rates of the condition numbers for the quasi-stiffness matrices shown in Fig. 3.4 do not

 conform to the theoretical study [4] either.

 3.2. The case of the composite matrix

 In solving the Helmholt z equation by the Nédélec element, one needs to consider the com-
 posite matrix

 K(n Af, 5) = pM + 5, 1jl> 0, (3.3)

 where p = k2, and k is the wave number. We study the conditioning and sparsity of the
 composite matrix for a wide range of the parameter ¡i. In particular, we consider four cases
 with /i = {1, 10, 100, 1000} for the approximation order from zero up to six.

 3.2.1. Sparsity of the composite matrix

 For each approximation order and for both bases, we record the percentage of nonzero entries
 in the composite matrix and calculate the ratio. The result is shown in Table 3.3. Note that
 for all the values of the parameter /¿, the sparsity does not change for each specific order of
 approximation.

 Table 3.3: Sparsity of the composite matrix K from the new basis and the basis in [5], denoted by
 'A-C'.

 Order New A-C Ratio

 Õ 83.33% 83.33% 1.000
 1 62.50% 87.50% 1.400

 2 72.00% 83.33% 1.157

 3 73.61% 78.06% 1.060

 4 80.79% 73.39% 0.908

 5 82.67% 76.21% 0.922

 6 85.49% 75.33% 0.881 ~

 It is clear from Table 3.3 that for the relatively lower orders of approximation p = {1, 2, 3},
 the composite matrix is more sparse with our new basis. However, for relatively higher orders
 of approximation p = {4, 5, 6}, the composite matrix is more dense with our new basis. For the
 lowest order p = 0, the performance is the same.

 From Fig. 3.5 to Fig. 3.10 we show the sparsity profiles of the composite matrices with both
 bases for the approximation order from one up to six.

 3.2.2. Condition numbers of the composite matrices

 The comparison results with the basis by Ainsworth and Coy le [5] are shown from Table 3.4 to
 Table 3.7.
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 On the Construction of Well- Conditioned Hierarchical Bases 537

 Fig. 3.5. Sparsity profiles of the composite matrix from the new basis (left) and the basis in [5] (right)
 with approximation order p = 1.

 Fig. 3.6. Sparsity profiles of the composite matrix from the new basis (left) and the basis in [5] (right)
 with approximation order p = 2.

 Fig. 3.7. Sparsity profiles of the composite matrix from the new basis (left) and the basis in [5] (right)
 with approximation order p = 3.

 A few remarks are in place based upon the results shown in these four tables. For the
 approximation order from zero up to six and for each value of the parameter ¡i considered,
 the condition number of the composite matrix is always lower for the newly constructed basis.
 In particular, with the fifth order of approximation, the conditioning of the composite matrix
 has been improved at least by an order relative to the Ains worth- Coy le basis [5]. For the case
 with the parameter 'x = 1000 and with order p = 5, the condition number has decreased by
 about 586 times. For each specific value of the parameter ¡i and with both bases, the condition
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 number grows with the increase of approximation order. Due to such a growth, in practice
 it is not advisable to apply a much higher order of approximation, for example, p > 6. It is
 worthwhile to note that Ledger et al. [18] have applied the highest approximation order p = 4
 for a bistatic electromagnetic scattering problem. The maximum approximation order p = 5
 has been considered in [6] for the study of a benchmark Maxwell eigenvalue problem. In [10] the
 authors have utilized the greatest approximation order p = 6 to demonstrate the exponential
 convergence in the computation of Maxwell eigenvalues.

 Fig. 3.8. Sparsity profiles of the composite matrix from the new basis (left) and the basis in [5] (right)
 with approximation order p = 4.

 Fig. 3.9. Sparsity profiles of the composite matrix from the new basis (left) and the basis in [5] (right)
 with approximation order p = 5.

 Fig. 3.10. Sparsity profiles of the composite matrix from the new basis (left) and the basis in [5] (right)
 with approximation order p = 6.
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 Table 3.4: Condition number of the composite matrix K from the new basis and the basis in [5],
 denoted by 'A-C'. /x = 1.

 Order New A-C Ratio

 Õ 5.097e00 6.500e00 1.275e0
 1 2.726e02 6.004e02 2.202e0

 2 2.934e04 3.541e04 1.207e0

 3 4.019e05 1.538e06 3.826e0

 4 1.050e07 5.118e07 4.874e0

 5 3.217e09 3.355el0 1.043el

 6 ~ 7.408ell 1.604el2 2.164e0

 Table 3.5: Condition number of the composite matrix K from the new basis and the basis in [5],
 denoted by 'A-C'. ¡jl = 10.

 Order New A-C Ratio

 Õ 6.009e00 7.400e00 1.231e0
 1 3.290e01 6.877e01 2.090e0

 2 3.274e03 4.017e03 1.227e0

 3 4.342e04 1.762e05 4.057e0

 4 1.110e06 6.018e06 5.419e0

 5 3.336e08 4.058e09 1.217el

 6 7.543el0 4.437ell 5.883e0

 Table 3.6: Condition number of the composite matrix K from the new basis and the basis in [5],
 denoted by 'A-C'. /¿ = 100.

 Order New A-C Ratio

 Õ 3.571e00 7.143e00 2.000e0
 1 1.725e01 5.741e01 3.329e0

 2 1.321e03 3.428e03 2.595e0

 3 1.012e04 1.829e05 1.806el

 4 1.828e05 6.920e06 3.785el

 5 4.584e07 2.356e09 5.140el

 6

 Table 3.7: Condition number of the composite matrix K from the new basis and the basis in [5],
 denoted by 'A-C'. fj, = 1000.

 Order New A-C Ratio

 Õ 4.808e00 9.615e00 2.000e0
 1 2.131e01 5.741e01 2.695e0

 2 2.203e03 3.814e03 1.731e0

 3 1.585e04 2.196e05 1.385el

 4 1.783e05 1.202e07 6.742el

 5 2.180e07 1.280el0 5.872e2

 6 3.864e09 1.921ell 4.973el
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 4. Discussion and Conclusion

 A new set of hierarchical basis for tetrahedral 7¿(curl)-conforming elements has been pro-
 posed with the goal of improving the conditioning of the mass and quasi-stiffness matrices.
 The basis functions are given analytically. The construction of the new basis is motivated
 by the study of orthogonal polynomials of several variables [11], and based upon the work by
 Ainsworth and Coyle [5], and by Schöberl and Zaglmayr [25], thus combines the advantage of
 both works. The idea is to make each sub-set of shape functions, grouped and associated with a
 topological entity on the 3-simplex, have maximum orthonormality over the reference element.

 This is achieved by appropriately exploiting classic orthogonal polynomials, viz., Legendre and
 Jacobi polynomials over simplicial elements. The result of such a construction is that the basis
 functions are partially orthonormal over the 3-simplex but not completely. One is tempted to
 use the standard Gram-Schmidt orthogonalization procedure to make the entire basis functions
 orthonormal. However, such an effort will destroy the unique features of each category to which

 a particular set of basis functions belong. In this sense, explicit construction of a hierarchical
 and complete orthonormal basis for tetrahedral 7{(curl)-conforming elements does not exist.

 The sparsity pattern of the mass and quasi-stiffness matrices has been studied numerically,
 and the opposite trend of percentage of nonzero entries in both matrices has been identified.
 Compared with the Ainsworth- Coyle basis [5] and in general, both the mass and quasi-stiffness
 matrices are relatively more sparse.

 The numerical experiment has shown that the conditioning of the mass matrix is relatively
 more pronounced, i.e., one order higher than that with the quasi-stiffness matrix. For both
 the mass and quasi-stiffness matrices and on the logarithmic scale, the condition number grows
 linearly vs. the order of approximation up to order three. It does not make too much sense if a
 rather high-order basis, e.g., beyond order six is applied due to the quick growth of the condition

 numbers of the mass and quasi-stiffness matrices. The so-called "curse of dimensionality" [8]
 manifests in this context. In contrast to the two-dimensional case, for which we have constructed

 a well-conditioned hierarchical basis for the triangular H (curl) -conforming elements up to a
 relatively higher order [30], e.g., order twelve, we cannot construct beyond a relatively lower
 order a well-conditioned hierarchical basis for tetrahedral 7^(curl)-conforming elements using
 the same technique as in [30]. The main reason is due to the coupling of the non-orthogonal
 face modes from different groups, to the coupling of the non-orthongonal interior modes from

 different categories, and to the coupling of the face and interior modes [2,32].
 For the composite matrix pM + S and with a dynamical range of p = 1000, the newly

 constructed basis shows better conditioning relative to the Ainsworth- Coyle basis [5] for the
 approximation order from zero up to six. For the fifth order of approximation, the conditioning
 of the composite matrix has been improved at least one order. With the proposed basis and
 for the approximation order p = {1, 2, 3}, the composite matrix is relatively more sparse.
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