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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS FOR INITIAL
 BOUNDARY VALUE PROBLEMS OF NONLINEAR PDEs*

 WEI CAIt AND JLkNZHONG WANGt

 Abstract. We have designed a cubic spline wavelet-like decomposition for the Sobolev space Ho (I) where I is

 a bounded interval. Based on a special point value vanishing property of the wavelet basis functions, a fast discrete

 wavelet transform (DWT) is constructed. This DWT will map discrete samples of a function to its wavelet expansion
 coefficients in at most 7N log N operations. Using this transform, we propose a collocation method for the initial
 boundary value problem of nonlinear partial differential equations (PDEs). Then, we test the efficiency of the DWT

 and apply the collocation method to solve linear and nonlinear PDEs.

 Key words. wavelet approximations, multiresolution analysis, fast discrete wavelet transform, collocation meth-
 ods, IBV problems of PDEs

 AMS subject classifications. Primary, 63N30, 65N13, 65F10; Secondary, 41A15, 42C05

 1. Introduction. Wavelet approximations have attracted much attention as a potentially

 efficient numerical technique for solving partial differential equations (PDEs) [ 1] - [6]. Because
 of their advantageous properties of localizations in both space and frequency domains [7]- [9],

 wavelets seem to be a great candidate for adaptive and multiresolution schemes to obtain so-
 lutions which vary dramatically both in space and time and develop singularities. However, to
 take advantage of the nice properties of wavelet approximations, we have to find an efficient
 way to deal with the nonlinearity and general boundary conditions in the PDEs. After all, most

 of the problems of fluid dynamics, which have solutions with quite different scales, are gov-

 erned by nonlinear PDEs with complicated boundary conditions. Therefore, it is our objective
 here to address these issues when designing wavelet numerical schemes for nonlinear PDEs.

 Most of the wavelet approximation schemes for PDEs so far have been based on the
 wavelet decomposition of L2(R) with Daubechies' orthonormal wavelets on the whole real
 line R (see [1]-[6]). However, in solving the initial boundary value problem, treatment of the

 boundary conditions is an important aspect of any numerical scheme. In [1] an embedded
 domain approach is used so that the boundary condition gets absorbed into the PDEs via a
 penalty term. In [6], by using the primitive function of Daubechies' wavelet and its dilations

 and translations, the authors construct a Riesz basis for the Sobolev space Ho' (I) defined on
 a bounded interval I. Another common way to achieve wavelet approximation on a bounded
 interval is to keep all Daubechies' wavelets (or compactly supported spline wavelets), whose
 supports are totally inside the interval, intact while modifying those wavelets intersecting the
 boundary by an orthonormalization (semiorthogonalization) procedure (see [10]-[12]).

 However, we believe that a more natural approach for approximating a PDE's solution

 in a Sobolev space Ho2(I) is to construct directly a multiresolution analysis (MRA) (Vo C
 Vi C V2 ... ) for Ho (I) where Vj is generated by some scaling functions through dilations and
 translations. Using such an MRA, we can decompose Ho (I) into the fom Ho (I) = V0 e?5o
 Wj, where ? stands for orthogonal direct sum and Wj denotes the orthogonal compliment of Vj
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 938 WEI CAI AND JIANZHONG WANG

 in the space Vj+ l: Vj+ I = Vj E Wj. Then we show that the basis of all the subspaces Wj can be
 essentially generated from one function ("mother wavelet") by dilations and translations except

 the two boundary functions in each Wj which are generated from another function located at
 the boundary ("mother boundary wavelet") by dilations and reflections. Because the inner

 product considered here is in space Ho (I), not in space L2(I), these two mother wavelet

 functions will no longer have vanishing moments of the first two orders as usual wavelets

 in space L2 (see (3.17)). For simplicity, we will still use the term "wavelet" throughout this

 paper with the understanding that it is different from the usual wavelet with its nonvanishing

 moment. It is worthwhile to point out that despite the fact that these wavelet-like functions

 have no vanishing moments, the projection fj of any function f E Ho (I) on Vj still provides
 a "blurred" version of function f while the one on space Wj keeps its local details. Hence
 the magnitude of coefficients in the wavelet expansion of functions in Ho (I) does reflect

 the local scales and changes of the function to be approximated. It is these features that are

 needed for achieving adaptivities and MRAs in practical computations. Here we would like to

 mention Harten's recent work [13], his approach for designing a scheme for multiresolution

 representation of numerical data without directly using the wavelet idea is successfully applied

 in reducing the computational costs of numerical fluxes in Godunov schemes for shock-wave

 computations.

 To design a wavelet collocation method for nonlinear time evolution problems, the key

 point is to construct a discrete wavelet transform (DWT) which maps between function values

 and the wavelet coefficient space such that the resulting wavelet expansion interpolates the

 function values. In this paper, we will use a cubic spline wavelet basis of Ho (I) [14] for the
 construction of a DWT. A special point value vanishing property (see (3.7)) of this wavelet
 basis results in 0 (N log N) operations for the DWT where N is the total number of unknowns.

 Therefore, the nonlinear term in the PDE can be easily treated in the physical space and the

 derivatives of those nonlinear terms can be computed in the wavelet space. As a result,

 collocation methods will provide the flexibility of handling nonlinearity and various boundary

 conditions. In [15], a different method based on scale separation was suggested to compute the

 wavelet approximation of f (u) given a wavelet expansion with Daubechies' wavelets for u.
 The rest of this paper is divided into the following six sections. In ?2, we introduce the

 cubic scaling functions 0 (x), kb (x) and their wavelet functions 4t (x), V'b (x). An MRA and
 its corresponding wavelet decomposition of the Sobolev space H"o(I) are constructed using
 0 (x), 4b (x) and 4t (x), V'b (x). Then, we show how to construct a wavelet approximation for
 functions in the Sobolev space H2(I). In ?3, we introduce the fast DWT between functions
 and their wavelet coefficients. In ?4, we discuss the derivative matrix D for approximating
 differential operators. In ?5, we present the wavelet collocation methods for nonlinear time
 evolution PDEs. In ?6, we give the central processing unit (CPU) time performance of the
 DWTs and the numerical results of the wavelet collocation methods for linear and nonlinear

 PDEs. A conclusion is given in ?7.

 2. Scaling functions ?(x), ?b(X) and wavelet functions +(x), 4'b(X). Let I denote a
 finite interval, say I = [0, L], L be a positive integer (for the sake of simplicity, we assume

 that L > 4), and H2 (I) and H2 (I) denote the following two Sobolev spaces:

 (2.1) H2(I) = {f(x), x E II II f(i)112 < ,i =i0, 1,21,

 (2.2) H(12) = {f (x) E H2(,)I f (O) = f'() = f (L) = f '(L) = 01.

 It can be easily checked [16] that Ho (I) is a Hilbert space equipped with inner product

 (2.3) (f, g) = f "(x)g"(x) dx,
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 Fla. 1. Interior scalingfunctions 0 (x) (a) and boundary scalingfunction qb(x).

 thus,

 (2.4) IfI I(f, f)

 provides a norm for Ho (I).
 To generate an MRA for the Sobolev space Ho (I), we consider two scaling functions;

 specifically, we consider an interior scaling function 0 (x) and a boundary scaling function
 tbb(x) (see Figure 1):

 (2.5) 0(x) = N4(X) = -E( 4 (-l) (x-j)+,

 (2.6) kb (X) = 2 1 - 1)+-3(x-2 2x+ - j2x+ + 2(x +
 where N4(x) is the fourth-order B-spline [17] and for any real number n

 xn if x >O,

 X+ l otherwise.

 As a pair they satisfy the two-scale relationships given in Lemma 1.
 LEMMA 1.

 0(x = ,2_34(k 0(2x -k),
 k=O \

 2

 (2.7) kb(X) = P_10b(2X) + E fik (2x - k),
 k=O

 wher 91 11 19f 1 where - -4, 60o = -6 ,il- = 2' =8

 We summarize some properties of 0 (x) and qb(X) in the following lemma.
 LEMMA 2. Let 0 (x) and 4bb(x) be defined as in (2.5) and (2.6). Then we have

 (2.8) (1) supp(o(x)) = [0, 4];

 (2.9) (2) supp(ob(x)) = [0, 3];
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 940 WEI CAI AND JLANZHONG WANG

 (2.10) (3) 0 (x), Ob (X) E Ho2 (I)';

 1 1 _ 1
 (2.11) (4) q'(1) -0'(3) == '(2) = 0, i4(1)= --, b(2) -2 2' b 'b4 2'

 (2.12) (5) q(1) = 0(3) = 6q 0(2) = 2 q9,b(l) = 7- qb(2) - 6
 6' 3 12'6

 For any j, k E Z, we define

 (2.13) /j,k(X) = 0(2jx - k), Ob, j (x) = b (2 x)

 and let Vj be the linear span of {Ij,k(X), 0 < k < 2'L - 4, kb,j(x), b,j(L - x)}, namely,

 (2.14) VJ = span{0j,k(x) I O < k < 2jL -4; b,j(x), b,j(L -x)}.

 THEOREM 1. Let V,] j E Z+ be the linear span of (2.14). Then Vj forms dun MRA for
 HJ2(I) equipped with norm (2.4) in the following sense:

 (i) VO C VI C V2 C .*-
 (ii) cloSH2(UjEZ+ Vj) = H-2(I);

 (iii) njEZ+ Vi = VO; and
 (iv) for each j, {fj,k (x), b, j (x), b, i (L - x) } is a basis of Vj.
 Proof. The proofs for (iii) and (iv) are straightforward and omitted here. The proof for (i)

 follows from (2.7) in Lemma 1. To prove (ii), we recall some familiar results on interpolating
 cubic splines for smooth functions [18], [19].

 LEMMA 3. Let r be the partition given by xi = ih, 0 < i < n, h = (ba), and s(x) be the
 cubic spline interpolating f (x) E C4[a, b] at all points in r, i.e.,

 s (xi) = f (xi), O < i < n,

 and satisfying the following boundary conditions:

 (2.15) s'(a) = f'(a), s'(b) = f'(b).

 Then

 1. s (x) uniquely exists and

 (2.16) IIs(r) - f(r)I I < EriIf(4)looh4-r r = 0, 1, 2, 3,

 where Eo = E, El = 24 62 = 8 E3=1;
 2. if the average operator R is defined by

 (2.17) R (s") (xi) = s"(xil) + 1Os"(xi) + s'(xi+i) for 1 < i < n - 1,

 then

 (2.18) R(s")(xi) - f"(xi) = 0(h4).

 Proof of (ii) of Theorem 1. Let h = ,1 a = 0, and b = L. Consider f (x) E Co??(O L).
 Since CO'?(O, L) c C4[O0 Li n HO2(0, L), by Lemma 3, there is a unique cubic spline corre-
 sponding to the partition ir interpolating f (x). From the fact that f (O) = f (L) = f'(O) =
 f '(L) = 0, we have s(x) in Vj and then

 nj -4

 (2.19) S(X) = C_1/b,j(X) + E Ckkj,k(x) + CL-30b,j(L - X)
 k=O
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 FIG. 2. Interior waveletfunctions 4r(x) (a) and boundary waveletfunction 4'b(x).

 such that

 (2.20) s (xi) f (xi), O <i < nj,

 where n1 =2'L, xi = L.
 ni

 Finally, from (2.16) in Lemma 3 with r = 2 we have

 Ills - f I = lIs(2) -f(2) 1 IL2 < Llls(2) _ f(2) 1 loo < l 2L2-2j lf(4) ll00.

 Therefore, as j x oc, Ills - f III 0. This proves that CO (O, L) C ClOSH2(Ujecz+ Vj).
 Thus, Theorem 1(ii) follows from the fact that CO (O, L) is dense in H02(0, L). [
 To construct a wavelet decomposition of Sobolev space Ho2(I) under the inner product

 (2.3), we consider the following two wavelet functions i (x), Vb(X) (see Figure 2):

 (2.21) 4r(x) = --70(2x) + 20(2x - 1) - 3-q(2x - 2) E Vl,
 7 7 7

 24 6
 (2.22) *b(X) = -Pb(2x) - -10(2x) E Vi.

 13 13

 It can be verified that Vr(x) and *b(X) both belong to V1 and

 (2.23) +(n) = Vb(n) = O for all n E Z.

 Property (2.23) will be important in the construction of a fast DWT later. Now we define

 (2.24) *j,k(x)= (2jx-k), j>0, k=O, ...,nj-3,

 (2.25) *bij (x) = *b(2jx), bVj i(x) = *b(2'(L -x)),

 where again n1 = 2' L. For the sake of simplicity, we will adopt the following notation:

 (2.26) ikfij-I(x) = lb, j (x), *j,nj-2(X) = *b

 So, when k =-1 and nj -2, wavelet functions *j,k(x) will denote the two boundary wavelet
 functions, which cannot be obtained by translating and dilating * (x).

 Finally, for each j > 0, we define

 (2.27) W, = span {ij,k (x) I k =-1,.. ., -21.
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 942 WEI CAI AND JLANZHONG WANG

 THEOREM 2. The Wj, j > 0, defined in (2.27) is the orthogonal compliment of Vj in Vj+I
 under the inner product (2.3), i.e.,

 (1) Vj+i = Vj E Wj for j E Z+, where @ stands for VjI Wj under the inner product
 (2.3) and Vj+1 = Vj + Wj. Therefore,

 (2) WjI Wj+1, j E Z+, and
 (3) H02(I) = Vo E@jEZ+ Wj.
 Proof (1) We only have to prove Vj E Wj for j = 0, namely, for O < 1 < L -4,

 0 < k < L -3,

 (2.28) (q(x - 1), 4r(x - k)) = 0,

 (2.29) (q5(x - 1), Vb(X)) = 0,

 (2.30) (qbb(X), 4r(X - k)) = 0,

 (2.31) (Ib(x), fb(X)) = 0.

 Integrating by parts twice in (2.28) and using the fact that 4(x), 0q(x) E H02(I) , we have

 L

 (O(x-1), fr(x -k)) = f0"(x -l)i"(x -k) dx

 L

 = 0"(x - 1)/'(x - k) I -f 03(x - l) /'(x - k) dx
 =

 L

 = -q ') (x -l1) /i(x -kk)I~+ dx li( kd
 L

 =-0(3)(x - 1)(x -k) IL + 0(4)(X1)*(X - k) dx 0

 L

 = -0(4)(X-/I)(x -k) dx.

 From equation (2.23) and an easily checked identity,

 4

 0(4) (X) = ( )(-1)js(x - j),

 where 8(x) is the Dirac-delta function. So we have

 (q(x-1), r(x-k)) = ( (-l)j*(j-(k-1)) 0.

 Equations (2.29)-(2.31) can be shown in a similar way. So (1) follows from (2.21) and
 (2.22) andthefactthatdim Vj = 2'L-1 and dim Wj = 2'L, andthendim Vj+I = 2+ 1L-1 =
 (21L - 1) + 21L = dim Vj + dim Wj; (2) follows from (1); and (3) follows directly from
 Theorem 1 (ii). [

 As a consequence of Theorem 2, any function f (x) E H2 (I) can be approximated as
 closely as needed by a function fj (x) E Vj = Vo E Wo E WI E ... ED Wj-1 for a sufficiently

 large j, and fj (x) has a unique orthogonal decomposition

 (2.32) fj(x) = fo + go + gi + .+ gg_,

 where fo E Vo, gi E Wi, 0 < i < j-1.
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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS 943

 2.1. Approximation for a functioh in HI(1). Consider the following two splines:

 (2.33) 717(x) = (1 -x)+,

 (2.34) 712(X) = 2x+- 2 7 63 (3 + 1 (x-2)3.

 For any function f(x) E H2(I), we have f (x) E Cl(I), by the Sobolev embedding
 theorem. Therefore, we can define the following interpolating spline lb,j f (x), j > 0:

 (2.35) Ib,j f (X) = ca17l1(2ix) + a2772(2'x) + a3772(2'(L - x)) + U4771(2j(L -x)),

 where the coefficients crl, a2, (X3, aU4 are determined by certain interpolating conditions we

 will state below. Since spline lb, f(x) is expected to approximate the nonhomogeneities
 of function f(x) at the boundaries, these interpolating conditions will also be called end
 conditions. The following two kinds of end conditions are common in applications.

 2.1.1. Derivative end conditions. We can impose the following end-derivative condi-
 tions:

 (2.36) Ib,jf(O)= f(O), Ib,jf(L)= f(L),

 (2.37) (Ib,j f)'(O) = f(O), (Ib,j f)'(L) = f'(L).

 It can be easily verified that if we choose

 (2.38) ail = f (O), 012 f(2O1) + 23(0)

 03 - + + f (L), 04 = f (L), then Ib,j f satisfies conditions (2.36), (2.37).

 In many situations, however, we do not know the values of derivatives f'(O), f '(L). Then
 they have to be approximated by finite differences using only the values of f(x). To preserve
 the exact order of accuracy for the cubic spline approximation, we suggest using the following
 approximations:

 (2.39) f (O) =- ckf (kh) + O(hs),
 hk=

 1 P )
 f'(L) =- __LCkf (L -kh) + O(hS)

 hk=0

 where h > 0 and p > 3. For p = 3, ifwe take

 11 3 1
 co--6- I cl = 3, C2 =- C3 = -,

 then s = 3 in (2.39), and thus, equation (2.37) is satisfied within an error of 0(h3). Corre-
 spondingly, the coefficients ak, 1 < k < 4, for lb,j f (x) become

 p

 (2.40) 1 f(O), a2 = c' f (kh),
 k=O

 p

 0X3 Z kc/f(L -kh), al4 = f (L),
 k=O
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 944 WEI CAI AND JLINZHONG WANG

 where

 Coo+ ' Ckk 1 <k<p. \2j+ 'hc 2J 2j+lh'

 Now we have f (x) - b, j f (x) E Ho2(I) and the decomposition (2.32) can be applied.
 Finally, for any function f (x) E H2 (I), we can find a function fj (x) in the form of

 (2.41) fj(x) =Ib,jf + fo+ go+g, +..+gj-l, fo E Vo, gi E Wi, 0 < i < j - 1,

 which approximates f (x) as closely as needed provided that j is large enough. Furthermore,
 by Lemma 3, the approximation order will be 0 (2-4J) if fj(x) is chosen as the interpolating
 spline of f (x).

 2.1.2. Not-a-knot conditions. In many applications, the solutions vary dramatically near

 the boundary, so approximation (2.39) to the end derivatives could result in large errors. In
 those cases, we prefer to use the so-called not-a-knot end conditions [20], which amounts to

 requiring that the spline Ib, j f (x) agrees with function f (x) at one additional point near each
 boundary. So we have the following equations for Olk, 1 < k < 4:

 (2.42) Ib,j f (O) = f (O), Ib,j f (L) =f (L)

 Ib,jfQCl) = f(vD), Ib,f (T2) = f(T2)

 In our case, by choosing Tl = r*T, T2 = L- 1 we have

 3f(O)
 (2.43) ll = f(O), 0a2 = 6fQci) - _____

 0a3 = 6f(C2)- f ) 04 = f(L).
 4 9

 Although in this case f (x) - Ib, j f (x) is no longer in the space Ho (I), an interpolating
 spline fj (x) in the form of (2.41) with Ib, j f (x) defined in (2.42) will still have an approxi-
 mation to f (x) of order 0(2-4j) [21].

 3. DWT. In this section, we will introduce a fast DWT which maps discrete sample

 values of a function to its wavelet interpolant expansions. Such expansion with the wavelet

 decomposition will enable us to compute an approximation of the first and second derivatives
 of the function.

 3.1. Interpolant operator Ivo in Vo. Consider any function f (x) E HJ2(I) and denote
 the interior knots for Vo by

 (3.1) x1 =kg k = 1 ...,9L- 1

 and the values of f (x) on {4xl)}jL- 1 by

 (3.2) (-)= f(xk)), k = 1, ... , L - 1.

 The cubic interpolant Ivof(x) of data {f(-l)) can be expressed as

 L-4

 (3.3) IVof (X) = C- 1b(X) + ECk0O,k(X) + CL-30b(L - x)
 k=O
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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS 945

 and Ivof(x) interpolates data f[(l), k = 1, ... , L - 1, namely,

 (3.4) Ivof(Xk-,)) = fk(1)s k= 1, ... ,L- 1.

 Let B be the transform matrix between f(- ) - (fVl) f(-l))T and the coefficient
 C = (C-, ...,CL3)T, i.e.,

 (3.5) f(-l) = Bc,

 where by using item (5) in Lemma 2, we have

 7 1
 12 6

 1 2 1
 6 3 6

 1 2 1

 B=
 1 2 1

 1 2 1
 6 3 6

 1 7

 6 12

 To obtain the coefficients Ck, -1 < k < L - 3, in (3.3), we have to solve the tridiagonal
 system (3.5), which involves (8L) operations.

 3.2. Interpolation operator Iwjf in Wj. Similarly, we can define the interpolation op-

 erator lwj f(x) in Wj, j > 0, for any function f(x) in Ho2(). For this purpose, we choose
 the following interpolation points in I:

 (3.6) =~~~~U k + 1.5 (3.6) Xk) = 2 , -1 < k < n - 2,

 where nj = DimWj = 2iL.
 It can be checked that for the interpolation points {xf-')} for V0 in (3.1) and {x() } for

 Wj, j > 0, in (3.6), the wavelet functions Vj,k (X) satisfy a point value vanishing property.

 3.2.1. Point value vanishing property of 4j,k(X). For j > i, -1 < k < nj - 2,

 Ij,k(Xk ) = 1,

 (3.7) *lj,k(X (0) = , -< t< ni -2, if i >0; 1 < < L -1,if i =-1.

 So {0o,k(x)I, {*j,k(X)15'l0 form a hierarchical basis for the Sobolev space Hol(I) [22].
 Moreover, the point value vanishing property will be crucial in obtaining a fast DWT.

 The interpolation Iwj f (x) of a function f (x) E Ho (I) in Wj, j > 0, can be expressed as
 a linear combination of /j,k (X), k =-1, . .. , nj - 2, namely,

 nj -2

 (3.8) Iw,f(x) = E fj,k *,k(X)
 k=-1

 and

 Iw1f(x, ) = f -1 < k < nj -2.
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 946 WEI CAI AND JIANZHONG WANG

 If we denote M1 as the nith-order matrix that relates f = (fj,-i, . , f,j-2)T and
 f(i) = (f(x!i)), ..., f(x$h) U)T, then

 (3.9) f(i) = jf

 where

 14

 ' 1 1
 13 14

 _4- 1 -141

 1 1 14
 1 1 1
 14 13

 14

 The solution of the coefficients {fj,k, 1 < k < n -2) again involves solving a tridiagonal
 system (3.9) which costs (8nj) operations.

 Now let us assume that the values of a function f (x) E HJ2(I) are given on all the

 interpolation points {x'j)} defined in (3.1) and (3.6). We intend to find the wavelet interpolation

 Pjf(X) E Vo @ Wo E W1$ ** * @ WJ-1 for J-1 > , i.e.,
 L-4

 'PJf(x) = f_1,-10b(X) + x f_l,kOk(X) + f-1,L-30b(L - x)
 k=O

 J-1 nj-2

 + fj,k /j,k(X)
 j=O _k=-1

 J-1

 (3.10) = f-I(x) + E fj(x),
 j=O

 where

 nj-2

 f-1(x) = Ivof(x) E Vol fj(x) = E fI,k*jVk(X) E W1, i 0,
 k=-1

 and the following interpolating conditions hold:

 'PJ f (xk ) = f (Xk)) 1 < k < L - 1,

 (3.11) Pif(x (j) = f(xi () j > 0, -1 < k < n -2.
 Let us denote by f = (f(&1), f(O), ... , f(J-1))T the values of f (x) on all interpolation

 points, i.e.,

 f(1 f (X(-))IL-1

 =(_ {f(x~k ) ki=l > 09

 and by f = (f1) f , ... ., f ))T the wavelet coefficients in the expansion (3.10):

 '(-1) ~ L-
 f = { -1,k k=1 9
 f n {fy.kki n-2 i o.

 f f,lk =>0
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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS 947

 The following algorithm provides a recursive way to compute all the wavelet coefficients f.
 Note that the wavelet expansion (3.10) can be expanded to include higher-level wavelet spaces

 Wj, J < j < J', by adding only terms from the higher wavelet spaces, i.e., Wj, . Wj, -1.

 3.3. DWT for f f. This direction of transfonn is straightforward by evaluating the
 expansion (3.10) at all the collocation points {xk') j > -1. The point value vanishing

 property (3.7) of the wavelet functions and the compactness of SuPPVj,k(x) can be used to
 reduce the number of evaluations.

 Number of operations. Let N be the total number of collocation points and N = (L -

 1) + Ej ' n1 = 2JL - 1. In the evaluation of Pjf (x(i)), values of + (x) and + (x) at dyadic
 points k are needed and they can be computed once for future use.

 Recalling (3 .10) and the point value vanishing property (3.7) of the wavelet basis functions,

 we have

 Pjf (x (j U) = fi(x(-1)), 1 < k < L - 1,

 which needs 4(L - 1) (flops).

 For each 0 < j < J - 1, to compute Pj f (x(j)), -1 < k < nj-2, requires 5 jnj (flops).
 Thus, it takes 4(L - 1) + iJJ=O 5jn1 < 5N log N (flops) to compute the vector f.

 3.4. DWT for f f. Recalling that f = (f f(O), ... f(J1))T, we proceed to the
 construction of Pi f (x) in the following steps.

 Step 1. Define

 L-4

 f- I(x) = Ivof(-) = f-1,- Ib(x) + E f-1/kOk(X) + f-1,L-30b(L -x),
 k=0

 so fi (x) interpolates f (x) at the interpolation points x -1 < k < L - 1, namely,

 (3.12) fi _(x{ )) = f (x(-

 Step 2. Define

 no-2

 (3.13) fo(x) = 'wo(f(O) - (Ivof)(o0) = E f o, IV,o(x),
 1=-1

 where (Ivof)(0) = {Ivof(x 0o) no-21
 As a result of the, point value vanishing property (3.7) of the wavelet functions, we have

 *o,i(x41-)) = 0, -1 < I < no-2, 1 < k < L-1, thus

 fo(X(-l)) =0, 1 < k < L -1.

 So we have, for 1 < k < L - 1,

 (-l )) + fo(xk )) = r-i(xk1)) Ivof(x1)) = f(X ))

 (3.14) f-I(x )0) + fo(x0 ) Ivof(xk )) + (f,O) - (Ivof) )0) = (X( )

 Equation (3.14) implies that function f-i (x) + fo(x) actually interpolates f (x) on both

 interpolation points {x (-j)}IL- for Vo and the interpolation points {X(O)}L--2 for Wo.
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 948 WEI CAI AND JLANZHONG WANG

 Fourier Transformation of psi(x)

 5 -

 4-

 2 -

 -20 -15 -10 -5 0 5 10 15 20
 Frequency domain

 FIG. 3. Fourier transformations of * (x).

 Step 3. Generally, we define, for 1 < j :! J - 1,

 (3.15) f1 (x) w0)- - (P if ) )
 nj1 -2

 (3.16) = Efjk*jk(X)
 k=- 1

 where (Pj-jf)(j) = Pj_f(x(j'), -1 < k < nj-2.
 Again, as in Step 2, we can verify that function fi (x) + fo(x) +* + fj-i (x) interpolates

 function f(x) on all interpolation points {x (-)'}L-1, ..., {x(j-l)}ju-12. Specifically, for j =
 J we havePjf (x) = fi (x) +fo(x)+ . .+f- I (x), which satisfies the required interpolation
 condition (3.11).

 Number of operations. For j =-1, the number of operations to invert (3.9) by using

 the Thomas algorithm to obtain {f(-l)) is 8(L - 1)(flops). For 0 < j < J - 1, the cost of

 computing the coefficients f(J) in fj (x) = Iw1 (f(j) - (Pfjkf)j) = Zl<k<n1-2 fJ,kVIIk(x)

 has three parts: (1) evaluating (Pjjf)(J) = (Pj-lf(x(j)} - 5jnj(flops); (2) calculating the
 difference f(i) - (Pj_ f)(i) - nj (flops); (3) inverting the matrix Mj in (3.9) - 8nj (flops).
 So the total cost of finding f = 8(L - 1) + EL5j 1) (5j + 9)nj < 6N log N where, again,
 N - 2JL - 1.

 3.5. Wavelet expansion coefficients {f;jk}. First we consider the Fourier transfonnation
 of the wavelet function 4 (x),

 7 /sin co4 3
 (3.17) *4() = -(2- cosw) in )e- 2

 3

 We find that f(0) = 7, which means that *(x) has no vanishing moment of the first
 order (see Figure 3). Since the wavelet decomposition we consider here is in the space H

 the decaying properties for the wavelet coefficients {fj,kI ought to be related to the vanishing
 moments of the second derivative of * (x) (see Figure 4), not to those of + (x). To clarify
 the meaning of the wavelet coefficients { fj,kI in the finite wavelet decomposition of function
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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS 949

 Fourier Transformation of DA2 psi(x) /DA2 x

 50-

 40 -

 sn 30 -

 20-

 10

 -20 -15 -10 -5 0 5 10 15 20
 Frequency domain

 FIG. 4. Fourier transformations of ifr"(x).

 f (x) in H (I), let us consider the dual basis {I*j*k(x)} for {fj,k(x)} in Wj, i.e.,

 (3.18) f(v{Jk)"(x)(Vjf1)"(x) dx = 81k.

 Since Wj, j = 0, . . ., J - 1, and Vo are mutually orthogonal, we have

 (3.19) fj,k = f "(X)(4rk)"(x)dx.

 We need to express '*j*{k(X) in terms of {Ij,k(X)}kk-21, namely,

 nj -2

 (3.20) 4j,k (x) = (
 1=-i

 where the coefficients ,Pj)* are determined as follows.
 Let Gj denote the matrix

 (3.21) Gj = j)nj.nj

 wheref~kl = fI/j'k(x)<C'l(x) dx,-1 < k, 1 < nj -2. Then, from (3.18) we have

 (3.22) (fik(j)nj)nj = Gj71.

 To estimate the entries of matrix (,8k(j)*)nj xnj, we recall that

 (I) = C Pkl I , jk (x ) * j I (x) d x

 = 2 1 *0,k(X) *,l(x ) dx

 = 23j 4rA(x) 4o,1(x) dx
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 950 WEI CAI AND JLkNZHONG WANG

 and that roi(n) = O, n E Z,( (2) 1 = - b(l) , b1,4b(-) =
 13' 2) - 28 x 3 3(x- 2), (4)() - 28 x 12(x- ), *(4)(5) = 28 x 38(x-

 -), 44)(1) =28 x 1538(x - 1), and 4(4)(3) - 28 x 13 (x- 3). Thus we have the following:

 896 9 1 o
 69 13 -13
 9 54 10 1
 13 14 14 14

 1 10 54 10

 13 14 14 14

 1 10 54

 6 14 14 14
 Gj = X 23(1+2)

 54 10 1 0
 14 14 14

 * 10 54 10 1
 14 14 14 '13

 1 10 54 9
 14 14 14 13

 0 1 9 896
 13 13 169

 - x 2 'i.

 rj = (Ykl)njxnj is actually a Hermite matrix satisfying

 nj-2

 Ykk - : I Ykll C > 0, -1 < k <nj;-2,
 1=-1,l1 k

 where C is a constant independent of j. Hence there exist two positive constants C1 and C2,
 which are independent of j, such that

 ClInj < rj < C2Inj

 where Inj is the nj x nj identity matrix. Now denote

 rj1 = (Ykl)njxnj

 By using Lemmas 8 and 9 in [23], we assert that there are two positive constants K and y
 such that

 yk*l I < K exp(-y Ik-11I).

 Since

 (fl(J)*) = - x7 -3(j+2) 1
 nj xnjXn X 2 i Pk 6j-

 we have

 (3.23) IPk',I ' K12-3J exp(-y Ik -11).

 To estimate the coefficients fjk in (3.19), we use the following result from Meyer's book
 [8].

 LEMMA 4. Let g(x) be compactly supported, be n times continuously differentiable, and
 have n + 1 vanishing moments:

 fxPg(x)dx = 0 for O < p < n.
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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS 951

 Let a, 0 < a < n, be a real number that is not an integer and f (x) E L2. Then f (x)
 is uniformly Lipschitz of order a over a finite interval [a, b] if and only iffor any k E Z and

 j E Z such that 2-Jk E (a, b),

 (3.24) f (x)g(2Jx - k) dx = 0(2 as j oo.

 Applying this lemma, we can prove the following result.

 LEMMA 5. Let 0 < a < 1 and f E Ho'(I). If the second derivative of the function f is
 Holder continuous with exponent a, at xo E I, i.e.,

 If"(x) - f"(xo) < c x - xOla, X E (Xo -8, Xo + 8) C I

 for some 8 > 0, then for any k E Z, j E Z+ such that 2-1Jk E (xo - 8/2, xo + 8/2),

 (3.25) Ifikl = 0(2(a+2)j) as j -+ 00.

 Proof. Since f and /b, defined by (2.21) and (2.22), are two times continuously differ-
 entiable and their second derivatives have two vanishing moments, by Lemma 4,

 Ifj,kI = I(f, *jk)I < E Ifkl I l(f, rl i)I
 2-J1E(xo-3,xo+8)

 + f3 lpk II(f, fjl)I
 2-i1e(xo-3,xo+B)

 < > + ) K12-3i exp(-ylk - 11)22j f"(x)*"(2jx -1) dx
 2-i1E(xo-3,xo+3) 2-ile(xo-&,xo+8)R

 < L E Kl exp(-y lk-11)1 0(2 (t+2)j) + K2 exp (-28y2i) Lexp-ys)
 -2-i1E(Xo-3,Xo+8) 2 s=1

 = o(2-(a+2)j). o

 Lemma 5 implies that the wavelet coefficients fjk, j > 0, reflect the singularity of the
 function to be approximated. In practice, when we solve PDEs using collocation methods,
 we often use the values of the functions, not their derivatives. Therefore, to use the wavelet
 coefficients to adjust the choice of wavelet basis functions, we have to establish a relation

 between the magnitudes of the wavelet coefficients fj,k, j > 0, and f (x). Let us first state
 the following result on the inverse of the tridiagonal matrix from [24].

 LEMMA 6. Let A be an n x n tridiagonal matrix with elements a2, a3, .. ., an on the
 subdiagonal, bl, b2, .. ., bn on the diagonal, and C2, c3, .. ., c,n on the superdiagonal, where

 ai, ci :A 0. Define the two sequences {um 1, {vm I asfollows:

 (3.26) uo = 0, ui = 1, um =--(am-lum-2 + bm-lum-1), m > 2,
 cm

 1
 (3.27) Vn+1 = 0, Vn = 1, Vm =-- (bm+iVm+i + Cm+2Vm+2) m < n-1,

 am+,

 where ai and cn+1 are arbitrary nonzero constants. Then A-1 = (oai,j) is given by

 (3.28) |lj alvo k=2 aka
 al v Hk=2 ak
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 952 WEI CAI AND JIANZHONG WANG

 COROLLARY. Let Mj be the interpolation matrix in (3.9). Then we have the following
 estimates on MJ1 = (aij):

 (3.29) Ia,ij K K

 where K = 1.1726 and a = 7 + ./i9 13.928.
 We delay the proof of (3.29) to the Appendix.

 THEOREM 3. Let f (x) E H02(0, L), M = max, If (x)I, and Iwj f (x) be its interpolation
 in Wj defined in (3.8). IfforE >0,-1 < k1 <k2 <nj -2,

 If(X(j))I < E for ki < k < k2,

 defining

 (3.30) If f(x) =fj,k j,k(X)
 -1<k<nj-2,ke[kj +1,k2-1]

 where 1 = 1(E) = min(n,-log), then we have

 (3.31) II1j f (x) -wj f (x)j < C(M)E,

 where C(M) = 6K (Ol + M), K = 1.1726, and a = 7 + 9-2 13.928.
 Proof From (3.9), we have

 f(j) = My-If(J)

 where f = (fj,-l, * * f,nj-2)T f() = (f(x), . . , f(xnj 2))T Thus
 ni

 fj,k = k,i f (Xi2), -1 < k < nj -2.
 i=l

 So we have

 (3.32) IfJ,kI < K E aIkiI If(xr-2)I.

 For any given E > 0, we take e = min(n, -log j a). For k E [k1 + e, k2 - f], using
 (3.32) we have

 IJfj,k I < K . jk-ij If (X_i2)1 + L. aik-il If(Xi-2)1
 _1k iI<e Ik-ilI>e

 < KE i- +MK E i>i
 Ik-i I<e Ik-i I>e

 < 2KE[ + (!) + . + (!) ] + 2MK [(-)e+ + . + (-)ni]

 <2KE 1 1 +M2MK (+ _+ _____2

 < 2KE +2MKE
 a-i a-i

 - C'E,

 where C' = f(a + M).
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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS 953

 Finally, we have

 I j f (x) - Iw1 f (x) I = L f,k/j, k (x)
 kE[kj+e,k2-1]

 - E 1fj,k11*j,k(X)1 _< C 16 E j, ls(X).
 kE[kj+e,k2-e] kE[k1+e,k2-e]

 Note that in the last summation, only three terms will be nonzero for any fixed x, so we

 have

 Iwj f(x) - Iwjf(x)I < 3C'E = CE,

 where C = 6K (a + M). This concludes the proof of Theorem 3. [

 Remark. As a consequence of Theorem 3, the coefficients fj,k of the wavelet in-

 terpolation operator Iwj f(x) can be ignored if the magnitudes of function f(x) at points

 x W E [x %j) xLes j ] are less than some given error tolerance e. This procedure will only
 result in an error of 0(E). For E = 10-1o, t = 9 and for = 10-8, t = 7. In the wavelet

 interpolation expansion (3.10), Twi is used to interpolate the difference between a lower-level
 interpolation Pj-I f (x) and f (x), i.e., Pj-I f (x) -f (x). Thus, the function Pj-I f (x) -f (x)
 will be the function occurring in Theorem 3 (recall that in Theorem 3 that function is still de-

 noted by f (x) for the sake of simpler notation). Hence, the coefficients fj,k in the wavelet
 expansion will be less than the error tolerance E in a larger region of the solution domain as
 j becomes larger. Then many terms of fj,k (X) can be discarded in the wavelet expansion of

 f (x). This fact will be used later to achieve adaptivity for the solution of PDEs. The idea
 of decomposing numerical approximations into different scales has been previously used suc-

 cessfully in the shock-wave computations with uniform high-order spectral methods, where

 essential nonoscillatory (ENO) finite difference methods and spectral methods are combined

 to resolve the shocks and the high-frequency components in the solution, respectively [25].
 We conclude this section with the following result which shows how to use wavelet

 coefficients to estimate the data interpolated by 'WI.

 THEOREM 4. Let lwj f (x) and f (x) be defined as in Theorem 3. For E > 0, -1 < k, <
 k2 < nj -2, if

 Ifj,kI < fork, < k < k2,

 then

 (3.33) If(x(j))1 <3E forkj+3<k<k2-3.
 Proof The proof follows from the definition of lw1 f (x). O

 4. Derivative matrices. The operation of differentiation of functions, given by its wavelet
 expansion of (3.10), can be represented by a finite dimension matrix D. Such a matrix has been
 investigated in [26] for wavelet approximation of periodic functions based on Daubechies'
 compactly supported wavelets. The properties of matrix D, especially of its eigenvalues,
 greatly affect the efficiency and stability of the numerical methods for the solution of time-

 dependent PDEs.

 Because of the multiresolution structure of spaces Vj, Vj c Vj + 1 and Vo ( W0 e ... WJ =
 Vj+1. We can assume that J + 1 = 0 and the wavelet interpolation uo(x) for function u(x)
 can be written as a linear combination of Ib, OU(x) and basis in Vo, namely,

 L-4

 (4.1) UO(X) = Ib,OU(X) + U-10b,O(X) + E UkkO,k(X) + UL-30b,0(L - x).
 k=O
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 954 WEI CAI AND JIANZHONG WANG

 Here we only consider the case where Ib,oU (x) is defined in (2.35) with end-derivative condition
 (2.36)-(2.39). The case of not-a-knot conditions can be treated similarly.

 4.1. Second derivative matrix. Consider the second derivative matrix which approxi-
 mates the second differential operator

 (4.2) Lu = Ux

 with the boundary conditions

 (4.3) u(O) = u(L) = O.

 As uo(x) is a cubic spline interpolant of function u(x) based on the knots xi = i, =
 0, . . ., L with the end derivatives given by (2.39), from the first and second derivative continuity
 condition of uo(x) we have

 hi~ h Ui - U~i 1iL
 (4.4) u=i ui" + 3 u' + < i < L, 6 3 ' h

 (4.5) u' = h' u hi1 .U + Ui-mi , 1 < i - L,

 and

 (4.6) hi + uh + 20+ hi u, 6 Ui+ -Uii LUi-Ui-Li
 hi + hi+1 hi + hi+1 + hi+ hi+, hi+, hi

 where 1 < i <L - 1, u' = u'(xi), u' = u"(xi), and hi = -xi- l = 1.
 Equations for the second derivatives at xi, 1 < i < L - 1, are provided by (4.6) while the

 equations for the second derivatives at two end points can be obtained from (4.5) (i = 1) and

 (4.4) (i = L):

 (4.7) h uo' + h6 -u = - -uo

 L6 UL1 + h U,L = UL- UL I h

 where uo, UL are the approximations of the first derivative of u (x) at xo XL in (2.39), respec-
 tively.

 Using the notation

 U = (u(O), u(l), .. ., u(L))T E RL+1,

 U= (u(0), u"(1), . . ., u/1(L))T E RL+

 from (4.6), (4.7), and (4.8) we have the following:

 (4.9) Tlu' = T2u + y,

 where

 /h hi O 2 LL 0
 3 6

 hi-- 2 h2

 T= hi 2 h +i

 hL-1 2 hL
 hL_l+hL hL1- +hL

 6 h3
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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS 955

 6 _ 6 .(6 + 1) 6
 hj(hj+h2) hj+h2 hi h2 h2 (h I+h2T

 T2=..-.

 hL-1 (hL-1 +hL ) -TL I +hL (hL-1 +hL )hL (hL 1 +hL j

 hL hL

 = * ) ( Ju=ru,

 and

 t = (co,. .., cp, 0,...,0)TERL+, -(0, . R 0+ Cp, ...
 h h

 with c', ... , cp defined in (2.39).
 As a result of the uniqueness of the spline uo(x), T1 is invertible, so we have

 (4.10) u" =T-1(T2+r)u=D2u.

 By eliminating the first and last rows and columns, we then obtain the second derivative matrix
 for the differential operator (4.2).

 4.2. First derivative matrix. Here we consider the first derivative matrix which approx-
 imates the first differential operator

 (4.11) LCu = u,

 with the boundary condition

 (4.12) u(L) = 0.

 Using the notation

 U = (u'(0), u'(1), . .. , uf(L))T E RL+1,

 and using (4.4) and (4.5), we have

 (4.13) u' = Hiu"/ + H2u,

 where

 3 6

 6 3

 h2 hI 0
 6 3

 111= ~~~~~h h 0
 6 3

 6 3

 6j_, 3 k
 6
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 956 WEI CAI AND JIANZHONG WANG

 and

 _1 1

 h1 hi

 1 1 0

 h hL-
 h2 h2

 hi hi

 1 L ~0
 hLl I hL hL

 1 1

 hL hL

 Finally, by using (4.10) we obtain

 (4.14) U' = (H1D2 + H2)u = D1U,

 and, after eliminating the last row and column of Tl, we also have the first derivative matrix
 for the differential operator (4.11).

 In Figure 15, we plot the eigenvalues of Dh for L = 8, J = 0, 1, 2, 3, which correspond
 to N = 8, 16, 32, 64. The eigenvalues come in conjugate pairs with two pure real eigenvalues.
 The real parts of all the eigenvalues are negative. The largest eigenvalue increases in the order
 of 0(N) in magnitude. In Figure 16, we plot the eigenvalues of LD2 for L = 8, J = 0, 1, 2, 3,
 which correspond to N = 8, 16, 32, 64. They are all real and positive and the largest one
 increases in the order of 0(N2).

 5. Adaptive wavelet collocation methods for PDEs. In this section we consider a col-
 location method based on the DWT described in ?3 for time-dependent PDEs. Let u = u (x, t)

 be the solution of the following initial boundary value problem:

 Ut + fx(u) = uxx + g(u), x E [0, L], t > 0,
 u(0, t) = go(t),

 (5.1) 1 u (L, t) = gi (t),

 u (x, O) = f (x).

 Here only Dirichlet boundary conditions are considered, however, the methods can also be
 modified to treat Von Neumann-type or Robin-type boundary conditions.

 We use the idea of the method of lines where only the spatial derivative is discretized by

 the wavelet approximation. The numerical solution u j (x, t) will be represented by a unique
 decomposition in Vo E Wo E ... E Wj-1, J - 1 > 0, namely,

 L-4

 Uj(X, t) = Ib,Ju(x, t) + lL1,-1(t)0b(X) + E U-,k(t)k(X) + U-1,L-3(t)0b(L-
 k=O

 J-1 -nj-2

 + LE Uj,k (t) *j, k (X)
 j=O _k=-l

 J-1

 (5.2) =U-1 (X) + E Uj (X),
 j=O

 where Ib,JU (x, t) given in (2.35) consists of the nonhomogeneity of u (x, t) on both boundaries,

 and the coefficients Uj,k (t) are all functions of t. Using the DWT, we can also identify the nu-
 merical solution Uj (x, t) by its point values on all collocation (previously named interpolation)
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 ADAPTIVE MULTIRESOLUTION COLLOCATION METHODS 957

 points, i.e., {x(j)} in (3.1) and (3.6). We put all these values in vector u = u(t), i.e.,

 u = u(t) = (u(-1) u(?) u(J-1)T

 where u(j) = {u(x(j), t)}, 1 < k < L - 1, for j = -1; -1 < k < nj -2, for j > 0.
 To solve for the unknown solution vector u(t), we collocate the PDE (5. 1) on all collocation

 points and obtain the following semidiscretized wavelet collocation method.

 5.1. Semidiscretized wavelet collocation method.

 ujt + fx(uj) = R(ujxx) + g(uj)Jx=xI m -1 < j < J - 1,
 Uj(O, t) = go(t),

 (5.3) uJ(L, t) = gi(t),

 Uj(X(', 0) = f-(x())q
 where 1 < k <L -1, forj =-1; -1 < k < nj -2, forj >0. TheaverageoperatorR on
 the second derivative is used to take advantage of the superconvergence of the cubic spline at
 the knot points (see (2.17)). However, R should only be used at a local uniforn mesh [19].

 Equation (5.3) involves a total of (2J - 1)L + 2 unknowns in u; two of them will be

 determined by the boundary conditions and the rest are the solutions of the ordinary differential
 equation (ODE) system subject to their initial conditions. To implement the time marching
 scheme for the ODE's system (e.g., Runge-Kutta-type time integrator), we have to compute

 the derivative term in (5.3) fx (u j (x(j))) and ujxx (x(J)) in an efficient way. Let us only discuss
 the first derivative which involves the computation of the nonlinear function f (u j (x, t)). For
 this purpose we first find a similar wavelet decomposition as (5.2) for f(uj). For a general
 nonlinear function f (u), this can be done in a straightforward manner by using the DWT in ?3.

 5.2. Computation offx(x(4) = fx(ui(x0)).
 Step 1. Given u = (u(-1), u .. , u(J-1))T, compute f(i) = {f(u(J))}, j > -1, and

 define

 f = (f(-1), f(O), f(J-1))T

 Step 2. Compute the wavelet interpolation expansion using DWT for f:

 L-4

 fJ(X, t) = Ib,Jf + fl-1,-l(t)0b(X) + E f-l1,k(t)Ok(X) + f-1,L_3(t)Ob(L - x)
 k=O

 J-1 -nj-2

 (5.4) + E f fj,k(t)fj,k(X)
 j=O -k=-l

 Step 3. Differentiate (5.4) and evaluate it at all collocation points {xk W}, j > -1:

 fx(U J)Ix=xk() = (Ib,J f) (Xk ) + -1,- b(xk
 L-4

 + E E-1,k(t)4k (k )--1, L-3(tI*L -L
 k=O

 J ni(-2

 + E E ,fi,1(t)*i,1(Xk)
 i=O-n1=-_
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 958 WEI CAI AND JIANZHONG WANG

 5.2.1. Cost of computing the derivatives. For each single collocation point, it takes

 7 + 5(J + 1) = 5J + 12(flops) to compute fj(x(J)). Therefore, the total cost of computing
 all derivatives is (5J + 12)N < SN log N. Again, +'(x) and ?'(x) at the dyadic points
 k, < k < 21L, can be precomputed for future use.

 Assuming that the Euler forward difference scheme is used to discretize the time derivative

 in (5.3), we obtain a fully discretized wavelet collocation method.

 5.3. Fully discretized wavelet collocation method.

 I n+l = uJ' + At[-fx(u') + R(uJXX) + g(u)]X=X(j), -1 < i < J - 1,
 un (O) = go (tn),

 u *(L) = gl(tn),

 U(5 (X U ) =((x) )

 where 1 < k < L- 1 ,for j -1; -1 < k < nj -2, for j > 0; tn = nAtisthetimestation;
 and At is the time step.

 5.4. Adaptive choice of collocation points. In equations (5.2) and (5.4), uj(x) and

 f(uj(x)) are expressed using the full set of collocation points {x ')}. As discussed in the

 remark after Theorem 3, most of the wavelet expansion coefficients u'j,k for large j can be
 ignored within a given tolerance E. So we can dynamically adjust the number and locations
 of the collocation points used in the wavelet expansions, reducing significantly the cost of the
 scheme while providing enough resolution in the regions where the solution varies significantly.
 We can achieve this adaptivity in the following two ways.

 5.4.1. Deleting collocation points. Let e > 0 be a prescribed tolerance and j 0 0,
 e = e(E) = min(Ll,o-g ).

 Step 1. First we locate the range for the index k,

 (5.6) (k 1/)9 * * (ktn1 I) m =m(j,E)

 such that

 (5.7) lI'jkl < 16, ki' < k < 1i'9 i= 19 ... ., m.

 Step 2. Following Theorems 3 and 4, we can ignore Uj k in (5.2) for ki ' k < 1i, i =
 1, ..., m, ki = kl + t + 3 l 1i = 1'-e-3, namely, we redefine uj (x) as

 Uj (X) := E Uj,k*j,k(X)g
 -1<k<nJ-2,kE1Cj

 where ICj = Ul<i<m[ki, li].
 Step 3. The new collocation points and unknowns will be

 {x W }, uj(x W) , k = 1, ..., L-1, if j =-1; k E {-1, ..., nj-2}\)Cj, if j > 0.

 5.4.2. Increasing level of wavelet space. Let E > 0 again be some prescribed tolerance,
 and if

 (5.8) max u J,k1> ',

 where subscript n indicates the solution at time t = tn, then we can increase the number

 of wavelet spaces Wj in the expansion for the numerical solution UJ (x) in (5.2), say, up to
 W,, J' > J.
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 CPU for DWT and Derivatives, 0 - DWT, + - Derivative, Solid line - Linear fit
 3

 2.5-

 2-

 0.5 -

 O
 0 2000 4000 6000 8000 10000 12000

 FIG. 5. CPU timing for performing DWT transforms (o) (including both directions) and computation of the
 derivatives (+). The solid line shows a linear fitting of the data. Horizontal axis-number of unknowns; vertical
 axis-CPU time in seconds.

 Step 1. At t = tn if condition (5.8) is satisfied, let J' > J and define a new solution
 vector

 UJ-n U 1), U(?), . . .,UJ1) U(J U(J'- 1) )T,

 where for J < j J'- 1, u(j) = {PJU(Xk ))kj-l1
 Step 2. Use un, on the right-hand side of scheme (5.5) to advance the solution to time

 step tn+1 and obtain solution unJt. Then, unJ+t(x) = Pj,unt+l E Vo 1 WO D * D WJ/-1 will
 be the new numerical solution which yields a better approximation of the exact solution of

 (5.1).

 6. Numerical results.

 6.1. CPU performance of DWT. The theoretical estimates of operations for performing
 the DWT in both directions and the computation of derivatives at all collocation points are

 0 (N log N), where N is the total number of terms in the wavelet expansion (3.10).
 We take the function in (6.1) and define its wavelet interpolation expansion (3.10) for

 L = 10, J = 2, 3, .. ., 10; the total number of terms (or collocation points) N = 2JL - 1
 is between 79 and 10,240. In Figure 5, we plot the CPU time for the performance of DWT
 back and forth in both directions ("o" in the figure) and the computations of derivatives on
 all collocation points ("+" in the figure). Also drawn in the figure is a straight line which
 indicates an almost linear growth of the CPU timing up to 12,000 points.

 6.2. Adaptive approximation of wavelet interpolation expansion. We consider a func-
 tion with high gradients

 hi(x + 1, 0.3) if-1 < x <-0.7,

 0 if -0.7<x < -0.5-3,

 hi(x+0.05,) if-0.5-8<x<-0.5+8,

 (6.1) f(x)= 0 if-0.5+8<x<0,

 sin(57rx)h1 (x - 0.25, 0.25) if 0 < x < 0.5,

 h2(x- 2 5)if 0.5 < x < 1,
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 0

 1

 -2 -

 -3

 : W ~~~~~~~~~~W

 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 FIG. 6. Wavelet approximation offunctions (6.1) with L = 40, J = 6. Top-exact solution (solid line) and
 approximation ("o"); bottom-absolute error in logarithm scale. Total number of fj,k is 5123.

 where a = 0.01, h 1 (x, a) is a hat function, and h2(x) is a step-like function and these functions
 are defined as

 f[sin( 7(x+a)]6 if lx I < a,
 (6.2) hl(x, a) = j [ 2a otherwise,

 0 otherwise,

 and

 f 0 if x <0,

 (6.3) h2(x) = 2772 I xt5(1-_t)5 dt if 0 < x < 1,
 I otherwise.

 First, we construct the full wavelet interpolation expansion (3.10), i.e., Pjf (x), for J =
 7, L = 40; the total number of wavelet functions (or the collocation points N) is N + 4 =
 (2JL- 1)+4 = 2JL+3 = 5123 (includingfourboundaryfunctionsinlb,Jf(x)). Atthetop
 of Figure 6, we plot f (x) (solid line) and Pj f (x) at non-interpolation points; at the bottom
 we have the absolute error in logarithmic scale. In Figure 7, we plot the components fo E Vo

 and gj(x) E Wj, 0 < j < 6, in Pjf(x) = Ib,Jf(x) + fo + go + * * * + gj-i. We can see that
 only the higher frequency part is retained in higher wavelet spaces Wj (notice that the scale
 varies for different pictures).

 Then, we use the procedure at the end of ?5 to filter out the coefficients fj,k which are less

 than E in magnitude. In Figure 8, we take E = 10- and the number of wavelet functions fj,k
 reduces to 289 with the accuracy of the approximation (bottom curves) within order of E. In
 Figure 9, we plot the solution at the remaining interpolation points and the expected clustering

 of the interpolation points is seen at locations where the function changes more dramatically.

 In Figure 10, we plot the magnitude of the wavelet coefficients fj,k, > -1, one level above
 another. The high density of the wavelet coefficients reflects the existence of high gradients
 of the approximated function. In Figure 11, we take E = 10-4 and the number of wavelet
 functions fj,k reduces to 206 with the accuracy of the approximation (bottom curves) within
 order of E.
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 I.2 0.6I L- l~

 0.8

 0.6 ~~~~ ~~~~~~~~~~~~~~(a) 0.4-

 0.4 o0.2

 0.2-

 0

 0-

 -0.2 - 0.2-

 -0.4-

 -0.4

 -0.6-

 -0. -0.

 0 5 10 15 20 25 30 35 40 45 5 10 is 20 25 30 35 40

 0.4 0.

 0.3 - 10

 0.15 , 10 , , , , I---~~~~~~~~~~~~~0.

 0.2 -c

 0.1 (

 0 -0.1I

 -0.1 -0.2

 -0.2 - -0.3

 -0.4.
 -0.4-

 -05 - 0.5

 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

 0.13 ----

 0.1 7 (e)

 5-

 0.05

 -0.05

 -5

 -0.1

 'O 5 10 15 20 25 30 35 40 0 5 10 is 20 25 30 35 40

 FIG. 7. Components of P6f (x) -fo + 90 + .. + 96. From top to bottom-(a)fo; (b) - (f) 90(X) - 94(X).
 Notice that the y-scales are different.

 6.3. Linear hyperbolic PDEs. We consider the problem of the linear hyperbolic PDE

 ut+u =,X O<x < 1,
 (6.4) u(O, t) =0,

 u(x, 0) = f (x) or h2( x

 In Figure 12, we present the solution of (6.4) at t = 0. 1 with initial condition u (x, 0) =
 h2( x 3), 8 = 0.004, and the numerical parameter L = 20, J = 8, E- 10-4. Third-order
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 0

 -2

 -3

 -8 + ++~~++ + + +. #\ ++~ ++

 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 FIG. 8. Same as Figure 6 but with deletion of wavelet coefficient f-k whose magnitude is less than e P5.
 Total number of fj,k left is 289.

 0.8 0
 * 0

 0.6 0

 0.4 - v

 0. *

 o 0

 -0.24

 0.4 -

 -0.2 -0.4 0

 -1 -0.5 0 0.5 t

 FIG. 9. Close up of top part of Figure 8, numerical solutio (o+n ) at remaining collocation points againt
 exact solutions ("o ").

 5 +

 4 - +

 4 +
 3 H44+W+f+*t+444t+44-?{+ *-----+-{- + +v

 3 + +++++ +++. . +

 + +++ +

 O~~~~~~~~ +
 -8.2 0 0.2 OA 0.8 0.8

 FIG. 10. Magnitude of the wavelet coefficients in the approximation used in Figures 8 and 9. The coefficients

 are plotted so the coefficients in Wj+ are above those in Wj.
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 o

 -1 _

 -2

 -3-

 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

 FIG. 11l. Same as Figure 8 but with e = i0-5. Total number Of fijk left is 206.

 0.4~~~~~~~~~- .-A.

 -5~~~~~~~~~~.

 0.2+ + .

 ++~~ ~ ~ ~ . + , ; * + +1

 1.5 + + + + + + + + + + + - 4+ +
 -0.2 .

 -0.4 ...q+

 -.6 0.4 -0.2 0 0.2 0.4 0.6 -02 0 0.2 0.4 0.9 0.8 1.

 (a) - + (c)

 0-4 -

 -6 +~~~~~~3

 o.2 -~~~~~~~~~-

 g-.

 0- 2-~~~~~~~~-

 --064-.4 -0.2 0 0.2 0.4 0.6

 FiIG. 12. Adaptive wavelet collocation solution of linear PDE (\6.4) with initial1 condition (6.3) (\8 = .004) at
 t-= 0.1 with L = 20, J _ 8, and error trolerance E i0". The number of collocation points N = .?40. (a) plus
 sign-numnerical solutions, solid line-exact solu4tion; (b) wavelet coefcients at all levels; (c) errors at collocation
 points in logawrithm scale.

 Runge-Kutta methods are used for all numerical results presented here. We update the mesh
 ever five time steps. Figure 12(a) is the numerical solution (plus) at 240 collocation points

 at time t = 0.1 against the exact solution (solid line). Figure 12(b) shows the distribution
 of wavelet coefficients for each level of wavelet spaces. The number of collocation points
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 T-0.1,delta=0.02,J-6L=15,eps= e(-4)nadpt=5,mbd=8, #4385 T=0,1, delta=0.02,J=6,L-15,eps=Ie(-4),nadpt=5,mbd=8, #=385

 (a) b

 0.5 5

 4- i _.4-++ + + ++ + . . . .+.. u --- t r 3 +
 2

 -0.5 +
 1 + + + +

 ++

 .1 -0,5 0 0.5 1 1.5 -0.2 0 0.2 0.4 0.6 0.8

 (c) V (d)
 5

 0.5 -9-

 3 + + + + + + + + + 4 +++

 2-

 -0.5 1 . + +

 C! + +
 -1 .5 0 0.5 1.5 -0.2 0 0.2 0.4 0.6 0.8

 10~~~~~ ~~~~ iIUIUU sl - 3U
 5-

 0.5 *4i-+4-44444-#

 4 + '' +

 3- + + 4 - i + + + + + +++

 2-

 -0.5 1 ++ + o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +
 -1 -0.5 0 0.5 1 1.5 -0.2 0 0.2 0.4 0.6 0.8 1

 FIG. 13. Adaptive wavelet collocation solution of linear PDE (6.4) with initial condition (6.1) (3 = 0.02) at
 t = 0.1, 0.2, 0.3 with L = 15, J = 8, and errortolerancee = 10-4. The number ofcollocationpointsN = 385, 394,
 and 392 at time t = 0.1, 0.2, and 0.3, respectively. (a)-(c) plus sign-numerical solutions, solid line-exact solution;

 (d)-(f) wavelet coefficients at all levels.

 fluctuates around 240 and only the wavelet coefficients of those wavelet basis functions close
 to the large gradients remained in the numerical solution. Figure 12(c) shows the errors of the
 numerical solution in logarithmic scale at all remaining collocation points.

 Figures 13(a)- 13(f) show the results of (6.4) with f (x) in (6.1) as initial condition (8 =

 0.02) and the numerical parameters L = 15, J = 7, e = 10-4. Figures 13(a)-13(c) show the
 solutions at time t = 0.1, 0.2, 0.3, when the number of collocation points is 385, 394, 392,
 respectively. Figures 13(d)- 13(f) show the wavelet coefficients of the numerical solution at
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 (g) (h)

 4q* *~~~~~~~~~~~~~~~~~~~~+*
 + + +~~~~~~~~~~~~~~~~~~~~~~~

 -21 70. 0 0. 1 1.5 .i -. . .

 + + + 4+4+4

 8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~e 44* , 4S .

 40 + ,+ 0+ + 4 X++ + -4 + + +, -4- +F+ + +

 + + '*+ -t;~+ +,#+

 +- 8 +

 *++ 'V ++~~~+

 .9~~~~~~~~~~~+ + .9t . 1

 . -0.+ o 0.5 l 1.5 - -0.5 0 0.5 1 1.5 + + + + ++

 ++ + +.6 + + +

 -6 + 4J ++ 41 + + + +* 4 4 .+

 -0.5 ~ ~ - -0. 0. O. 1. 1.5 0 05 .

 FIG. 13. (cont.). (g)-(i) errors of numerical solutions in logarithm scale at t = 0.1, 0.2, 0.3, respectively.

 those times, i.e., t = 0.1, 0.2, and 0.3, respectively. Figures 13(g) and 13(i) show the errors

 of the numerical solutions in logarithmic scale at t = 0.1, 0.2, 0.3, respectively.

 6.4. Inviscid Burger equation. Finally, we consider the problem of the nonlinear hy-

 perbolic PDE

 (6.5) u(0, t) = given,

 I.u(x,0) = f(x),

 where

 f-sin(ix) if-1< x< 1

 (6.6) f(x)=1 0 ~ ~~~~ otherwise.

 The solution of Burger's equation develops a shock at time t = If 3. 18. In this case, we

 take L = 15, J = 8, e = 10-4. With every five iterations we change the number and locations
 of the collocation points according to the criteria proposed at the end of ?5. The number of

 collocation points is 292, 295, 303 at times t = 0.3, 0.318, 0.319, respectively, Figures 14(a)-

 14(c) show the numerical solutions at those three times, respectively, while Figure 14(d) shows

 the solution a little while after a shock has developed at location x = 0. Further integration of

 the solution after this time will produce oscillations in the numerical solution as the numerical

 method has no mechanism to capture a real shock. Again, Figures 14(d)- 14(f) show the wavelet
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 -0.4 -~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~
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 FIG. 14. Adaptive wavelet collocation solution of inviscid Burger's equation (6.5) with initial condition (6.6)
 at t = 0.3, 0.318, 0.319 with L = 15, J = 8, and error tolerance e = 10-4. The number of collocation points
 N = 292, 295, and 303 at time t = 0.3, 0.318, and 0.319, respectively. (a)-(c) plus sign-numerical solutions;
 (d)-(f) wavelet coefficients at all levels.

 coefficients used in the numerical solution at time t = 0.30,0.318, and 0.319, respectively.
 The numerical scheme automatically puts more collocation points near the high gradient (x =
 0) and the derivative discontinuity (x = 1). Again, the third-order Runge-Kutta methods are
 used for the time integration, whose stability is to be determined by the eigenvalue distribution

 of the first and second derivative matrices 'Di and VD2 shown in Figures 15 and 16, respectively.

 7. Conclusion. In this paper, we have constructed a fast DWT which enables us to con-
 struct collocation methods for nonlinear PDEs. The adaptivity of wavelet approximation
 is conveniently implemented through the examination of the wavelet coefficients. The pre-
 liminary tests of the solution of PDEs indicate that such an approach will be important in
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 2 . N_8 71 N=16
 cmJ I cmJ

 3" 10 -- -- - -- -- - ?' --- --- E E

 -2.~~~~~.

 :b5 0 0.5 -0.2 0 0.2
 Real (*2**J) Real (*2**J)

 22 -

 1.2 0 0.2 -0.1 0 0.1
 Real (*2**J) Real (*2**J)

 FIG. 15. Eigenvalues for the first derivative matrix DI for L =8, j = , 1, 2, 3 whose sizes are 8, 16, 32, and
 64, respectively.

 0 0 5 N=8 :0.5 N=16

 0 0~I. I

 RE-0.5 LX 0 o5

 -1 , .-1.
 -10 0 10 -10 0 10

 Real (*4**J) Real (*4**J)

 > 0.5- N=32 0.5 N=64

 ~~~~ 0 ~~~~~~~~~~~ 0. ...

 3U -.5. cE -0.5

 a a

 -1 -1
 -10 0 10 -10 0 10

 Real (*4**J) Real (*4**J)

 FIG. 16. Eigenvalues for the second derivative matrix D2 for L = 8, j = O, 1, 2, 3 whose sizes are 8, 16, 32,
 and 64, respectively.

 large-scale computations where the solution develops extremely high gradients in isolated
 regions and uniform mesh is not practical. A final note on the use of higher-order spline for
 the construction of MRA for Sobolev spaces: the method used in this paper can be utilized
 to yield higher-order approximation to smooth functions. Considering the compactness of
 the support of the wavelet functions and the required smoothness in solving second-order
 differential equations, we have limited our discussion to the case of cubic splines in this paper.

 Appendix.

 Proof of (3.29). The proof is a straightforward application of Lemma 6. For Mj in (3.9),
 we have (a2, a3, . . .,an)-=(- 1 ,1, . . ,',1 ), (bi, b2, * . . ,bn) = (1, 1, * ,1), and (. 9 .T4, - w nT

 and (2, C a a. Oween=n =2 .Teeoe h C4 T4 . 9 4
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 sequence {um } in (3.26) satisfies the following relations:

 2534

 (A.1) uo=0 uI=1, u2=14, U3 13

 and for 4 <m <n,

 (A.2) um = cm(-Um-2 + 14umr1),

 where Cm = 13 if m = n; Cm = 1, otherwise.
 Recursive relation (A.2) is a finite difference of order 2 whose general solution is of the

 following form:

 (A.3) U - = cm (Clm-3 + C2m3)

 where ot = 7 + V/2, /p = 7- Vi./2 are the two distinct roots of the quadratic equation

 x2- 14x + 1 = 0,

 and constants cl and c2 are chosen so equation (A.3) is valid for m = 2, 3.
 Therefore,

 Uo=0, Ul = 1,

 (A.4) um = crm(/Llanm3 + ,218r3) 2 < m < n,

 where Itl = I (2534 - 14p) > 0, A2 = o-(14t - 2534) > 0.
 Similarly, we can show that

 (A.5) Vn+l= 0, vn = 1,

 (A.6) Vm = Cn_M+l(1tlctn-2-m + L2fln-2-m) for 1 < m < n -1,

 and

 vo = Sl(o n-4 + 82 8n-4)
 a,

 where 31 = (l3al)j > 0 32 = (13,-l)IL2 < 0 14 ' - 14

 Finally, following (3.28) in Lemma 5, we have the following estimates on the inverse of
 M1 .

 Denote ej, 1 < j < n, as

 1 if j=1,

 1f3 if j = 2,
 ej = 1 if 3 < j < n-1,

 14 if j =n.

 Case 1. i < j and 1 < j < n-1, i = 1:

 (,,1ian-2-j + ,2pn-2-j)
 (A.7) ?ai,1 =-e1Cn-j+l (,an-4 + 82in-4)
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 ADAPTIVE MULTTRESOLUTION COLLOCATION METHODS 969

 So we have

 14 an-2-j (ApI + 2ZL-2-jZ )
 ki,1i <13 on-4(81 - 82Zn4)

 14 ot(tl + A12/Z) 1
 13 (81 - 82) Oaj-l

 1
 - K

 wherez= < landK1 = 1.1666.

 Case 2. i < j and 1 < j < n - 1, 2 <i <n:

 (A.8)j= -e - - (it Iii3 + ,2fi-3)(p,,ian-2-j + 1,2n-2-j) (A.8) ?ai, j =-ei Cn- j+lCic (3,0tn-4 + 32fin-4)

 Case 3. i < j and j = n, i = 1:

 (A.9) i~,1 j i1 (8ia0n-4 + 2fln-4)

 Case 4. i < j and j = n, 2 < i < n:

 (A. 10) ot,1 = e t i-3 + 1l2fi-3)
 (380tn4 + 82 fln4)

 Case 5. i > j and j = 1, 1 < i < n-1:

 - i fl n-2-i + ,t2fln-2-i
 (A.11) a1,j =-e1cn-i (3n4 +-e2j4)

 Case 6. i > jandj = 1,i =n:

 (A.12) ot,j = (-ej 4 + 82f
 Case 7. i > jand2 < j n-1, 1 < i < n-1:

 (A. 13) ai, = -ej T1(_ ( 'lllj-3 + t2fij 3)(/Lian-2-i + ,2fn-2-i)
 (A.13)C=-j(Cn-i+l8 (,n-4 + 82 n-4)

 Case 8.i>jand2<j<n-1,i=n:

 (A.14) at,j = -ej (Izlij-3 + l2fij-43)
 (380tn4 + 82fin-4)

 For Cases 2-8, we can similarly obtain

 10ti I < Ki 2 < i < 89

 where K2 - 1.1726, K3 _ 1.1607, K4 _ 1.1666, K5 - 1.1666, K6 - 1.1607, K7
 1.1722, and K8 1.1666.

 Finally, if we choose K = 1.1726, then

 (A.T15) c lti,udeI th pr 1 < i, j < n.

 This concludes the proof. 0
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