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Abstract

In this paper, we propose a novel method to extend the fast multipole method (FMM) to calculate the electrostatic
potential due to charges inside or outside a dielectric sphere. The key result which allows such an extension is the construc-
tion of a small number (two for a 10�2 relative error in reaction potentials inside the sphere) of image point charges for
source point charges inside or outside the dielectric sphere. Numerical results validate the accuracy and high efficiency of
the resulting algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The fast multipole method (FMM) [1,2] has been recognized as one of the most significant recent algorithm
developments with important scientific and engineering applications, such as electrostatic potential calcula-
tions [3], and fast solvers for integral equations for electromagnetic scattering [4,5]. The FMM relies on the
analytical property of Green’s functions for the Laplace operator for electrostatic potentials or the Helmholtz
operator for wave scattering. Therefore, the FMM has only been used for the cases of homogeneous media or
the situations where Green’s functions can be obtained by methods of images for layered media [5]. In this
paper, we propose a novel method to extend the FMM to the case of a dielectric sphere where source point
charges are either inside or outside. The problem of finding the electrostatic potential for charges inside a
spherical cavity with a dissimilar dielectric constant than the surrounding medium has applications in the
study of quantum dots, and the calculation of the reaction field within a hybrid explicit/implicit spherical sol-
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vation model for biomolecules such as proteins [6]. A fast algorithm of O(N) will have wide impact in com-
putational simulations in many other areas, too.

An important development, which allows us to extend the FMM to the case of a dielectric sphere, is the
construction of a small number of discrete images (two images for a 10�2 relative error and four images
for a 10�4 relative error for most cases in reaction potentials inside the sphere) for charges inside or outside
the sphere to approximate the potential field in the whole space. This construction is based on a result of over
100 year history dating back to Neumann in 1883 [7] and Lindell in 1994 [8–10], which extended the Kelvin
image [11] for a conducting sphere to the case of a dielectric sphere. In the case of a dielectric sphere, in addi-
tion to an image point charge at the Kelvin image inverse point, there is an image line charge along a ray
extending from the inverse point to infinity or to the center of the sphere depending on whether the source
charge is inside or outside the sphere and where an observation point is located. Lindell has provided the
power law distribution for the line charge density along the ray. To the knowledge of the authors, this elegant
and incredible result has not been put into use in developing a numerical algorithm for calculating the poten-
tial field due to charges located inside or outside a dielectric sphere. It is noted that the calculation of potential
fields for multiple closely spaced conducting cylinders and spheres has been addressed in [12,13] using a method
of image charges. In this paper, we will develop specific methods to construct a small number of equivalent
image point charges for a dielectric sphere, based on the image line charge results of Neumann/Lindell,
and apply the FMM to calculate potentials in the whole space due to source point charges inside or outside
the dielectric sphere.

The rest of this paper is organized as follows. In Section 2, we will briefly review the classical electrostatic
theory to find the potential of a point charge inside or outside a dielectric sphere. In Section 3, we will first
review the results of image line charges for point charges inside and outside a dielectric sphere with detailed
derivations being provided for completeness in Appendix A. Then, we will show how to construct equivalent
sets of discrete image point charges to represent the image line charges. Careful study of various choices of the
discrete point charges (magnitudes and locations) is given. The smallest number of image point charges is pro-
vided for a given source charge location for a desired accuracy in the reaction potential. In Section 4, we will
discuss how to apply the FMM to calculate the potential in the whole space due to source point charges.
Numerical examples are given in Section 5 to demonstrate the accuracy of images and the efficiency of the
FMM with the image point charges for potential calculation. Finally, a conclusion is given in Section 6.
2. The potential of a point charge and a dielectric sphere

In this section, we shall briefly describe the classical electrostatic theory to find the potential of a point
charge inside or outside a dielectric sphere. In particular, we shall consider a dielectric sphere of radius a with
dielectric constant �i, which is centered at the origin of coordinates and embedded in an infinite homogeneous
medium of dielectric constant �o.

We will denote by x the physical location of a point in the space and x the distance of this point to the
center of the dielectric sphere.

2.1. Point charge inside the dielectric sphere: rs < a

Let us begin by considering the potential of a point charge q located on the x-axis inside the sphere at a
distance rs from the center of the sphere, see Fig. 1(a). With respect to a spherical coordinate system
(r,/,h), it is well-known that, because of the azimuthal symmetry, the potential V(r,h) at any field point F
due to the point charge q can be expressed in terms of Legendre polynomials of cosh.

More precisely, when the field point F is outside the sphere, i.e. r P a, since the potential must be zero at
infinity, it should be of the form
V ðr; hÞ ¼
X1
n¼0

An

rnþ1
P nðcos hÞ;
where Pn(x), n = 0,1,2, . . ., are Legendre polynomials.
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Fig. 1. A point charge and a dielectric sphere. (a) The point charge is inside the sphere (rs < a); (b) The point charge is outside the sphere
(rs > a).
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On the other hand, when the field point F is inside the sphere, i.e. 0 6 r 6 a, the potential due to the source
point charge in a homogeneous medium is q/(4p�iR). We must superimpose on this a potential (reaction poten-

tial), due to the polarization of the dielectric, which must be finite at r = 0. Therefore, when 0 6 r 6 a, the total
potential is
V ðr; hÞ ¼ q
4p�iR

þ
X1
n¼0

BnrnP nðcos hÞ: ð1Þ
Meanwhile, the potential due to the source point charge alone can also be expressed in terms of Legendre
polynomials, see Appendix A.1. Depending on whether r P rs or r 6 rs, we have
q
4p�iR

¼

q
4p�ir

X1
n¼0

rs

r

� �n
P nðcos hÞ; rs 6 r 6 a;

q
4p�irs

X1
n¼0

r
rs

� �n

P nðcos hÞ; 0 6 r 6 rs:

8>>>><
>>>>:
Hence, the potentials inside and outside the sphere take the form
V ðr; hÞ ¼

P1
n¼0

An

rnþ1
P nðcos hÞ; a 6 r;

P1
n¼0

q
4p�ir

rs

r

� �n
þ Bnrn

� �
P nðcos hÞ; rs 6 r 6 a;

P1
n¼0

q
4p�irs

r
rs

� �n

þ Bnrn

� �
P nðcos hÞ; 0 6 r 6 rs:

8>>>>>>><
>>>>>>>:

ð2Þ
The expansion coefficients An and Bn in Eq. (2) are to be determined by the boundary conditions that the
potentials are equal at the boundary of the sphere and the flux normal to the boundary is the same at either
side of the boundary, i.e.
V ðaþ; hÞ ¼ V ða�; hÞ;

�o

oV ðr; hÞ
or

����
r¼aþ
¼ �i

oV ðr; hÞ
or

����
r¼a�

:

Using the orthogonality of Legendre polynomials, we obtain



Table
Positio

Interna

Interio

Exterio

Extern

Exterio

Interio

Note.
(�i + �o

points

W. Cai et al. / Journal of Computational Physics 223 (2007) 846–864 849
An ¼
q

4p�i

� rn
s �

1þ c
2
� 2þ 2c

1� cþ 2n

� �
; n P 0; ð3Þ

Bn ¼
q

4p�i

� rn
s

a2nþ1
� c � 1þ 1þ c

1� cþ 2n

� �
; n P 0; ð4Þ
where c = (�i � �o)/(�i + �o). Note that c = 1 corresponds to the case that the sphere is of infinite dielectric con-
stant. Conversely, when c = �1, the surrounding dielectric of the sphere is of infinite dielectric constant.

2.2. Point charge outside the dielectric sphere: rs > a

Similarly, when the source point charge q is outside the dielectric sphere, as shown in Fig. 1(b), it can be
readily shown that the potentials inside and outside the sphere take the form
V ðr; hÞ ¼

P1
n¼0

CnrnP nðcos hÞ; 0 6 r 6 a;

P1
n¼0

q
4p�ors

r
rs

� �n

þ Dn

rnþ1

� �
P nðcos hÞ; a 6 r 6 rs;

P1
n¼0

q
4p�or

rs

r

� �n
þ Dn

rnþ1

� �
P nðcos hÞ; rs 6 r;

8>>>>>>><
>>>>>>>:

ð5Þ
and the coefficients Cn and Dn in Eq. (5) are given by
Cn ¼
q

4p�o

� 1

rnþ1
s

� 1� c
2
� 2þ 2c

1� cþ 2n

� �
; n P 0; ð6Þ

Dn ¼ �
q

4p�o

� a
2nþ1

rnþ1
s

� c � 1� 1� c
1� cþ 2n

� �
; n P 0: ð7Þ
3. Charge images of a point charge and a dielectric sphere

3.1. Image line charges for a source point charge

In 1883, Carl Neumann gave an ingenious mathematical formulation of image line charges for a point
charge inside or outside a dielectric sphere [7], effectively extending Kelvin’s image charge of a point charge
inside or outside a conducting sphere. Over one century later, these remarkable results had been rediscovered
independently by Lindell [8–10] and Norris [14] in the 1990s. Below, we include in Table 1 the results in Nor-
ris’s paper that give the magnitudes and the positions of various images. For completeness, we also include an
appendix which contains the main derivation of these results (not available in Norris’s paper).

In summary, in the case of an internal source point charge at rs, the reaction potential inside the sphere due
to the polarization charges induced on the surface of the sphere is equal to the potential generated by an image
1
ns and magnitudes of image charges

Position Magnitude Distributed image line charges

l source

r field ri (Pa) q0ii ¼ c a
rs

q q00iiðxÞ ¼
q
a

cð1þcÞ
2 ðx

ri
Þ�

1�c
2 ; ri 6 x

r field rs (6a) q0io ¼ ð1þ cÞq q00ioðxÞ ¼
q
rs

cð1þcÞ
2 ð x

rs
Þ�

1þc
2 ; 0 6 x 6 rs

al source

r field ri (6a) q0oo ¼ �c a
rs

q q00ooðxÞ ¼
q
a

cð1�cÞ
2 ðx

ri
Þ�

1þc
2 ; 0 6 x 6 ri

r field rs (Pa) q0oi ¼ ð1� cÞq q00oiðxÞ ¼
q
rs

cð1�cÞ
2 ð x

rs
Þ�

1�c
2 ; rs 6 x

a is the radius of the sphere; rs is the radial position of the source charge q; ri = a2/rs is the inverse point, and c = (�i � �o)/
), �1 < c < 1. The potential from the source point charge q at rs will be added to the potential from the images for interior field
when q is inside the sphere, and for exterior field points when q is outside the sphere.
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point charge q0ii outside the sphere at the inverse point ri ¼ a2rs=r2
s , and an image line charge that stretches

from this inverse point to infinity with the charge distribution defined by q00iiðxÞ. The potentials of these (point
and line) image charges and of the original source charge must be added together to find the total potential
field inside the sphere. Both the source and image charges are taken as acting in a homogeneous material of
dielectric constant �i, which is that of the material of the sphere. On the other hand, the potential outside the
sphere is equal to that from an image point charge q0io at the location rs of the source charge and an image line
charge that stretches from the source point rs inward to the center of the sphere with the charge distribution
given by q00ioðxÞ.

Likewise, in the case of an external source point charge at rs, the reaction potential outside the sphere due to
the charges induced on the surface of the sphere is equal to the potential generated by an image point charge
q0oo inside the sphere at the inverse point ri, and an image line charge that distributes from this inverse point
inward to the center of the sphere with the line charge distribution defined by q00ooðxÞ. The potentials of these
(point and line) image charges and of the original source charge must be added together to find the total
potential field outside the sphere. Both the source and image charges are taken as acting in a homogeneous
material of dielectric constant �o, which is that of the surrounding material outside the sphere. On the other
hand, the potential inside the sphere is equal to that from an image point charge q0oi at the location rs of the
source charge and an image line charge that distributes from the source point rs outward to infinity with the
charge distribution given by q00oiðxÞ.

3.2. Discrete image point charges for a source point charge

Within a given error tolerance in the potential field, we show how to construct an equivalent set of image
point charges to represent the image line charges listed in Table 1. The basic idea is to transform the under-
lying line integral for the potential for an image line charge onto the finite interval [�1,1], and then apply
appropriate Gauss–Radau quadrature related to specific Jacobi polynomials. The resulting Jacobi–Gauss–
Radau points and weights will give us magnitudes and locations of the desired discrete image point charges.

3.2.1. Source point charge inside the sphere: rs < a

(a) The potential inside the sphereWe begin by considering how to accurately approximate the potential due
to the image line charge q00iiðxÞ, which stretches from the inverse point ri to infinity, see Fig. 2(a). Recall
from Section 3.1 that the total potential at a field point F(r) inside the sphere, due to an internal point
charge q, consists of three components: the potential Vs(r;q) from the original source point charge q at rs,
the potential Vip(r;q) from the image point charge q0ii at the inverse point ri, and the potential Vil(r;q) due
to the distributed image line charge q00iiðxÞ, i.e.
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Fig. 2. Discretization of the image line charges q00iiðxÞ and q00ioðxÞ. (a) q00iiðxÞ; (b) q00ioðxÞ.
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V ðr; qÞ ¼ V sðr; qÞ þ V ipðr; qÞ þ V ilðr; qÞ ¼ q
4p�i � jr� rsj

þ q0ii
4p�i � jr� rij

þ
Z 1

ri

q00iiðxÞ
4p�i � jr� xj dx; ð8Þ
where
ri ¼
a2

rs

; q0ii ¼ c
a
rs

q; q00iiðxÞ ¼
q
a

cð1þ cÞ
2

x
ri

� ��1�c
2

; ri 6 x:
One key to the success for the proposed extension of the FMM in Section 4 is to approximate, within a given
error tolerance, the potential Vil(r;q) due to the image line charge q00iiðxÞ by the potentials of a small number of
discrete point charges. In order to achieve this, we discretize the following line integral by an appropriate
numerical quadrature
I ¼
Z 1

ri

1

jr� xj
x
ri

� ��1�c
2

dx: ð9Þ
First, by introducing the change of variables ri/x = ((1 � s)/2)s with s > 0, we have
I ¼ s � 2
c�1

2 s

Z 1

�1

ð1� sÞa � hðr; s; sÞds; ð10Þ
where a = (1 � c)s/2 � 1 and
hðr; s; sÞ ¼ 2sri

j 1� sð Þsr� 2srij
: ð11Þ
Next, we shall employ a numerical quadrature to approximate the integral I in Eq. (10). Note that s = �1
corresponds to the Kelvin image location x = ri. Also we have a > �1 since �1 < c < 1 and s > 0.
Therefore, we can choose Gauss-Radau quadrature based on Jacobi polynomials. The Jacobi polynomials
P a;b

n ðsÞ on the interval [�1,1] are orthogonal polynomials under the Jacobi weight w(s) = (1 � s)a(1 + s)b,
i.e.
 Z 1

�1

ð1� sÞað1þ sÞbP a;b
j ðsÞP a;b

k ðsÞds ¼ djk;
where a > �1, b > �1 [15]. More precisely, let sm, xm, m = 0,1,2, . . .,M be the Jacobi–Gauss–Radau points
and weights on the interval [�1,1] with s0 = �1 and a = (1 � c)s/2 � 1, b = 0. Then, the numerical quadrature
for approximating I in Eq. (10) is
I � s � 2
c�1

2 s
XM

m¼0

xmhðr; sm; sÞ; ð12Þ
which yields
V ilðr; qÞ ¼
Z 1

ri

q00iiðxÞ
4p�i � jr� xj dx �

XM

m¼0

qii
m

4p�i � jr� xii
mj
; ð13Þ
where for m = 0,1,2, . . .,M,
qii
m ¼ 2

c�1
2 s�1cð1þ cÞsxmq � x

ii
m

a
; ð14Þ
and
xii
m ¼ ri �

2

1� sm

� �s

: ð15Þ
Note that xii
0 ¼ ri. Therefore, after combining together the point image charge q0ii and the first discrete point

charge qii
0 , we have an approximation of the total potential inside the sphere in terms of the potentials of

M + 2 point charges
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V ðr; qÞ � q
4p�i � jr� rsj

þ q0ii þ qii
0

4p�i � jr� rij
þ
XM

m¼1

qii
m

4p�i � jr� xii
mj
: ð16Þ
Remark 1 (Three special cases). The parameter s > 0 in the change of variables ri/x = ((1 � s)/2)s can be used
as a parameter to control the accuracy of numerical approximation. When s = 2/(1 � c) we have a = 0, and in
this case the quadrature given by Eq. (12) simply reduces to the Legendre–Gauss–Radau quadrature. When
s = 3/(1 � c), we have a = 1/2. And when s = 1/(1 � c), we have a = �1/2.

Remark 2 (Spacing analysis). Assume that sM = 1 � O(1/M2). Then xii
M ¼ OðM2sÞ � a2=rs is the farthest image

point charge. A bigger s will produce a bigger xii
M , which will consequently produce a bigger FMM cube in the

FMM algorithm. Consider a few examples: In a typical biomolecular application where c � �1, when s = 3/
(1 � c) � 3/2, we will have xii

M ¼ OðM3Þ � a2=rs; when s = 2/(1 � c) � 1 we will have xii
M ¼ OðM2Þ � a2=rs; and

when s = 1/(1 � c) � 1/2 we will have xii
M ¼ OðMÞ � a2=rs. Hence in terms of the size of the FMM cube, it

seems that s = 1/(1 � c) will be the best choice.

(b) The potential outside the sphere
As stated in Section 3.1, the total potential at a field point F(r) outside the sphere due to an internal point
charge q, see Fig. 2(b), consists of only two components: the potential Vip(r;q) from the image point
charge q0io at the same location rs as the source charge, and the potential Vil(r;q) due to the distributed
image line charge q00ioðxÞ stretching from rs inward to the center of the sphere, i.e.
V ðr; qÞ ¼ V ipðr; qÞ þ V ilðr; qÞ ¼ q0io
4p�i � jr� rsj

þ
Z rs

0

q00ioðxÞ
4p�i � jr� xj dx; ð17Þ
where
q0io ¼ ð1þ cÞq; q00ioðxÞ ¼
q
rs

cð1þ cÞ
2

x
rs

� ��1þc
2

; 0 6 x 6 rs:
Similarly, to construct an equivalent set of discrete image point charges for the image line charge q00ioðxÞ within
a given error tolerance, we need to approximate the following line integral by a numerical quadrature
I ¼
Z rs

0

1

jr� xj
x
rs

� ��1þc
2

dx: ð18Þ
After introducing the change of variables x/rs = ((1 � s)/2) s with s > 0, we obtain a similar integral as in Eq.
(10) with
hðr; s; sÞ ¼ 2srs

jð1� sÞsrs � 2srj : ð19Þ
Therefore, for the same reason, we employ the numerical quadrature defined in Eq. (12) to approximate I in
Eq. (18), yielding
V ilðr; qÞ ¼
Z rs

0

q00ioðxÞ
4p�i � jr� xj dx �

XM

m¼0

qio
m

4p�i � jr� xio
m j
; ð20Þ
where for m = 0,1,2, . . .,M,
qio
m ¼ 2

c�1
2 s�1cð1þ cÞsxmq; ð21Þ
and
xio
m ¼ rs �

1� sm

2

� �s

: ð22Þ



W. Cai et al. / Journal of Computational Physics 223 (2007) 846–864 853
Note that xio
0 ¼ rs. Therefore, after combining together the point image charge q0io and the first discrete point

charge qio
0 , we obtain an approximation of the total potential outside the sphere in terms of the potentials of

M + 1 point charges
V ðr; qÞ � q0io þ qio
0

4p�i � jr� rsj
þ
XM

m¼1

qio
m

4p�i � jr� xio
m j
: ð23Þ
3.2.2. Source point charge outside the sphere: rs > a

When the source point charge is outside the sphere, we can also construct equivalent discrete image point
charges to the image line charges q00ooðxÞ and q00oiðxÞ. As a matter of fact, after introducing similar changes of
variables, we can transform the involving line integrals for the potentials from the image line charges into
the same integral as in Eq. (10) but with a slightly different h(r, s;s). Therefore, the same Jacobi–Gauss–Radau
quadrature defined by Eq. (12) can be applied to find equivalent image point charges and their locations,
which are summarized below.

(a) The potential outside the sphere
The total potential at a field point F(r) outside the sphere due to an external point charge q consists of
three components: the potential Vs(r;q) from the original source point charge q at rs, the potential from
the image point charge q0oo at the inverse point ri, and the potential due to the distributed image line
charge q00ooðxÞ, i.e.
V ðr; qÞ ¼ q
4p�o � jr� rsj

þ q0oo

4p�o � jr� rij
þ
Z ri

0

q00ooðxÞ
4p�o � jr� xj dx; ð24Þ
where
q0oo ¼ �c
a
rs

q; q00ooðxÞ ¼
q
a

cð1� cÞ
2

x
ri

� ��1þc
2

; 0 6 x 6 ri:
The approximation of Eq. (24) in terms of M + 2 equivalent image point charges is
V ðr; qÞ � q
4p�o � jr� rsj

þ q0oo þ qoo
0

4p�o � jr� rij
þ
XM

m¼1

qoo
m

4p�o � jr� xoo
m j
; ð25Þ

where for m = 0,1,2, . . .,M,

qoo
m ¼ 2

c�1
2 s�1cð1� cÞsxmq � a

rs

; ð26Þ
and � �s
xoo
m ¼ ri �

1� sm

2
: ð27Þ
(b) The potential inside the sphere
The total potential at a field point F(r) inside the sphere due to an external point source charge q consists
of only two components: the potential from the image point charge q0oi at the same location as the source
charge rs, and the potential due to the distributed image line charge q00oiðxÞ stretching from rs outward to
infinity, i.e.
V ðr; qÞ ¼ q0oi

4p�o � jr� rsj
þ
Z 1

rs

q00oiðxÞ
4p�o � jr� xj dx; ð28Þ
where
q0oi ¼ ð1� cÞq; q00oiðxÞ ¼
q
rs

cð1� cÞ
2

x
rs

� ��1�c
2

; rs 6 x:



854 W. Cai et al. / Journal of Computational Physics 223 (2007) 846–864
The approximation of Eq. (28) in terms of M + 1 equivalent image point charges is
Table
Positio

Interna

Interio
Exterio

Extern

Exterio
Interio

Note.
2 � 1,
q is in
V ðr; qÞ � q0oi þ qoi
0

4p�o � jr� rsj
þ
XM

m¼1

qoi
m

4p�o � jr� xoi
m j
; ð29Þ
where for m = 0,1,2, . . .,M,
qoi
m ¼ 2

c�1
2 s�1cð1� cÞsxmq � x

oi
m

rs

; ð30Þ
and
xoi
m ¼ rs �

2

1� sm

� �s

: ð31Þ
For convenience, we list in Table 2 the magnitudes as well as the positions of all discrete image point charges
for all four cases, where sm, xm, m = 0,1,2, . . .,M denote the Jacobi–Gauss–Radau points and weights on the
interval [�1,1] with the Jacobi weight w(s) = (1 � s)a(1 + s)b, a = (1 � c)s/2 � 1, and b = 0. Both sm and xm

can be obtained with the program Orthpol [15].
4. Extending the FMM to dielectric spheres

With the approximation for the potentials by discrete point charges established, we are ready to extend
the FMM to compute the potential involving a dielectric sphere. For instance, the procedures to evaluate
the interior potential field due to point charges inside the sphere are as follows. All other cases can be
done similarly.

(1) For each source point charge qs at rs = (xs,ys,zs) inside the sphere, find the corresponding point image
q0ii ¼ ðca=rsÞqs outside the sphere at the inverse point ri ¼ a2rs=r2

s , where rs ¼ ðx2
s þ y2

s þ z2
s Þ

1=2.
(2) In addition, for each source point charge qs at rs = (xs,ys,zs) inside the sphere, include M + 1 discrete

image point charges of magnitude
qii
m ¼ 2

c�1
2 s�1cð1þ cÞsxmq � r

ii
m

a
; ð32Þ

at the location rii
m ¼ rii

mrs=rs, where

rii
m ¼

a2

rs

� 2

1� sm

� �s

; ð33Þ
2
ns and magnitudes of discrete image point charges

Magnitude Position

l source

r field qii
m ¼ 2

c�1
2 s�1cð1þ cÞsxmq � xii

m
a xii

m ¼ ri � ð 2
1�sm
Þs

r field qio
m ¼ 2

c�1
2 s�1cð1þ cÞsxmq xio

m ¼ rs � ð1�sm
2 Þ

s

m = 0,1,2,. . .,M

al source

r field qoo
m ¼ 2

c�1
2 s�1cð1� cÞsxmq � a

rs
xoo

m ¼ ri � ð1�sm
2 Þ

s

r field qoi
m ¼ 2

c�1
2 s�1cð1� cÞsxmq � xoi

m
rs

xoi
m ¼ rs � ð 2

1�sm
Þs

m = 0,1,2, . . .,M

sm, xm, m = 0,1,2, . . .,M are the Jacobi–Gauss–Radau points and weights on the interval [�1,1] with s0 = �1 and a = (1 � c)s/
b = 0. The potential from the source point charge q at rs will be added to the potential from the images for interior field points when
side the sphere, and for exterior field points when q is outside the sphere.
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and sm, xm, m = 0,1,2, . . .,M are the Jacobi–Gauss–Radau points and weights on the interval [�1,1]
based on the Jacobi polynomial with a = (1 � c)s/2 � 1, b = 0 and s > 0.
(3) Apply the FMM to calculate the potential by including all original point charges qs, all point image
charges q0ii, and all discrete image point charges qii

m into the FMM cube, where all charges are taken
as acting in a homogeneous medium of dielectric constant �i. (In the case that the source charges are out-
side the sphere, the dielectric constant outside the sphere �o will be used).
Remark 3 (Adaptive FMM). It should be noted that, even though the original point charges could be
uniformly distributed inside or outside the sphere, image charges will be highly nonuniformly
distributed in a FMM cube. For instances, when evaluating interior fields due to internal sources, the
distribution of image charges outside the sphere will become sparser when moving away from the
boundary of the sphere. In contrast, when evaluating exterior fields due to the same internal sources,
the distribution of image charges inside the sphere will become denser when moving toward the center of
the sphere, see Fig. 3. For these reasons, an adaptive FMM [16–19] should be needed to achieve the best
efficiency.

Remark 4 (Single multipole representation of all image charges). In calculating the potential inside the sphere
using the images outside the sphere, it is possible to convert all the potentials from those image charges in
terms of one single multipole expression at some point, say, the inverse point ri. As the field inside the
sphere produced by the exterior images can be considered in most cases far field, only a few terms will
be needed in this expression. Similar arguments apply for the exterior field due to images inside the
sphere. This way, we will achieve a smaller FMM cube and a smaller number of total charges in the
FMM algorithm. However, this approach will need a modification of the existing FMM code, which will
be addressed in a future paper.

Remark 5 (Direct calculation for very small rs/a). For source charges very close to the center of the
dielectric sphere, the image charges according to (33) will be far away from the sphere boundary,
resulting in a large FMM cube. Therefore, in this case, direct calculation with series expansion (2) can
be used where only a few terms will be needed due to the fast convergence for small rs. For instance,
if this approach is applied for rs/a < 0.01, approximately one millionth of uniformly distributed
source charges will be affected (see also Remark 4 for alternative approach to reduce the size of the
FMM cube).
Distribution of 4728 image charges for 1182 source point charges uniformly distributed in the region 0.2 < r < 0.99 on an equatorial
ection of a unit sphere. The images are obtained for M = 3 and s = 1/(1 � c). (a) Images for interior fields; (b) Images for exterior fields.
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5. Numerical results

Due to the similarity of the analytical results for internal and external source point charges, we will only
present here numerical results for the case that the charges are all inside the sphere. This case has considerable
relevance in biophysical applications, as in biological structural analysis [6]. Unless otherwise specified, for
demonstration purpose we assume all point charges are randomly but uniformly distributed in the region
0 6 r 6 0.9a inside the sphere with the magnitude of each point charge being either 1 or �1 such that the
whole sphere is neutral. In addition, the radius of the sphere a is equal to 1, and the dielectric constants of
the sphere and the surrounding medium are �i = 2 and �o = 80, respectively. Also, in this section NP represents
the number of source point charges and NF represents the number of field points, respectively.

5.1. The number of image point charges vis the source location

As indicated earlier, the success of the proposed approach depends on whether the image line charges can
be approximated, for a given error tolerance, by a small number of image point charges. To answer this ques-
tion, we consider here one single point charge inside the sphere at a distance rs away from the center of the
sphere to investigate the dependence of the number of required discrete image point charges on the source
location. When calculating the errors of the numerical approximation of the reaction potential, we use the
results obtained with 200 Jacobi–Gauss–Radau points and s = 2/(1 � c) as the ‘‘exact’’ values. Also, in the
following table iEi denotes the relative error in the reaction potential measured in L1 norm over all NF field
points uniformly distributed on a cross-section through both the center of the sphere and the point charge, i.e.
Table
Depen

Interio

iEi
10�2

10�3

10�4

10�5

10�6

Exteri

iEi
10�2

10�3

10�4

10�5

10�6
kEk ¼ max
16k6NF

V ðxkÞ � EVðxkÞ
EVðxkÞ

����
����;
where EV(xk) and V(xk) denote the exact and the numerical reaction potential at a field point xk, respectively.
Table 3 lists the smallest number of image point charges needed to approximate reaction potential within a

given error tolerance for different source locations. The listed results are for the case of s = 3/(1 � c) only, but
we have also tested the other two special cases s = 1/(1 � c) and s = 2/(1 � c). The two cases s = 2/(1 � c) and
s = 3/(1 � c) have comparable accuracy, and both are better than the case of s = 1/(1 � c). When calculating
interior reaction fields, we use 100 · 100 field points uniformly distributed (under the polar coordinates) inside
a unit disk. And when calculating exterior fields, we use 100 · 100 field points uniformly distributed (under the
polar coordinates) inside a ring a < r 6 5a. For example, from Table 3, we can conclude that when the source
is located at rs = 0.5a away from the center of the sphere, 4 and 5 image point charges (including the Kelvin
image charge) are needed for the approximation error to be less than 10�5 in relative errors when calculating
the interior reaction fields and the exterior fields, respectively.
3
dence of the number of image point charges on the source location

rs/a

r fields

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 3 3 3 4 5
2 2 2 2 3 3 3 4 4 5 7 10
2 2 3 3 3 4 4 5 6 8 10 17
2 3 4 4 4 5 5 6 7 10 13 24

or fields

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
2 2 2 2 2 2 3 3 3 4 4 5
2 2 3 3 3 3 4 4 5 6 6 8
2 3 3 3 4 4 4 5 6 7 9 11
3 4 4 5 5 5 6 6 7 9 11 14
4 5 5 7 7 7 8 8 9 11 13 17
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As can be seen, only a small number of discrete images (less than 5 for most cases) are needed for 10�4

accuracy. In particular, when calculating interior reaction fields, two image charges are sufficient for the
approximation error to be less than 1%, regardless of the source charge location. (If the Jacobi–Gauss quad-
rature is employed to construct discrete image charges, it has been found that three image charges are sufficient
for the approximation error to be less than 0.1%, regardless of the source charge location.) For higher accu-
racy, unfortunately, more image point charges have to be used when the charge is close to the spherical bound-
ary. As demonstrated in Section 5.2, compared with direct expansions, however, the proposed image method
requires much less computations to achieve the same accuracy.

5.2. Comparison between the method of direct expansion and the method of images

It is well-known that when a charge is close to the boundary of the sphere, the convergence by direct series
expansion (2) or (5) is slow, requiring a great number of terms to achieve high accuracy in the potential.
Numerical experiments have shown that the method of direct expansion generally needs 50–70 terms to
achieve the same order of accuracy as the method of images with only 4–5 equivalent image point charges
(including the Kelvin image). Consequently, without using any acceleration strategy (like Ewald summations
[20] for the method of direct expansion or the FMM for the method of images), the method of images gen-
erally is a factor of 20–30 times faster than the direct expansion approach. It is expected that this ratio will
get larger as rs! a.

For example, Fig. 4(a) shows the approximation errors by direct expansion (2) when calculating interior
fields due to NP randomly but uniformly distributed point charges in the region r 6 0.9a inside the sphere,
while all NP field points are distributed randomly but uniformly inside the whole sphere. When calculating
the errors of the numerical approximations, we use the results obtained by direct expansion with 200 terms
as the ‘‘exact’’ values. Also, the relative error jjEjj is measured in L1 norm over all NP observation points, i.e.
Fig. 4.
interio
kEk ¼
max

16k6NP
jV ðxkÞ � EVðxkÞj

max
16k6NP

jEVðxkÞj
; ð34Þ
where EV(xk) and V(xk) denote the exact and the numerical total field potential at a field point xk, respectively.
In this case, the approximation errors by the method of images with 4 image charges and s = 1/(1 � c) are
1.97 · 10�5, 5.15 · 10�5, 6.09 · 10�5, and 8.83 · 10�6 for NP = 6250, NP = 12,500, NP = 25,000, and
NP = 50,000, respectively. It clearly shows that the direct expansion approach needs 50–70 terms to achieve
the same order accuracy as the method of images.
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Accuracy analysis results for the method of direct expansion, where NExp represents the number of used terms. (a) Results for
r fields; (b) results for exterior fields.
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Fig. 5. Accuracy analysis results for the method of images. On the left panel are the results when calculating the interior fields, while on
the right are those when calculating the exterior fields. (a,b) s = 1/(1 � c); (c,d) s = 2/(1 � c); and (e, f) s = 3/(1 � c).
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Table 4
CPU time in seconds on a 3 GHz-clock rate, 2GB-memory processor

NP Interior fields Exterior fields

NC With FMM No FMM NC With FMM No FMM

6250 29,759 13.8 5.3 25,000 10.6 4.4
12,500 59,487 18.4 21.2 50,000 11.3 17.9
25,000 118,476 23.1 85.4 100,000 12.6 71.2
50,000 236,808 43.4 338.3 200,000 15.2 284.9
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Similarly, Fig. 4(b) shows the approximation errors by direct expansion (5) when calculating exterior fields
with the same set of internal point source charges. In this case, all NP field points are located in the region
a < r 6 5a outside the sphere. The approximation errors by the method of images with 5 image charges
and s = 2/(1 � c) are 1.04 · 10�4, 5.62 · 10�5, 4.21 · 10�5, and 5.56 · 10�5 for NP = 6250, NP = 12,500,
NP = 25,000, and NP = 50,000, respectively. Again, it clearly indicates that the direct expansion approach
needs 50–70 terms to achieve the same order accuracy as the method of images.

5.3. Accuracy of the method of images

In this section, we shall further investigate the dependence of the accuracy of the image method on the num-
ber of discrete image point charges. We only consider here the case that all NP point charges are inside the
dielectric sphere.

Fig. 5 shows the error analysis results when we use images to calculate the total potentials inside and out-
side the sphere. First of all, it can be seen that for interior fields, only 3–4 discrete image point charges are
needed to achieve 0.01% accuracy even for the worst choice of s = 1/(1 � c). To achieve accuracy around
1%, only two image charges are needed! For exterior fields, even though the overall accuracy seems to be
not as good as the interior field case, still only 5 image charges are needed to achieve 0.01% accuracy with
s = 2/(1 � c). Secondly, for both interior and exterior fields, the error analysis results seem to indicate that
the accuracy for the case of s = 2/(1 � c) (which corresponds to the Legendre–Gauss–Radau quadrature) is
the best.

5.4. Field computation by the FMM

To investigate the efficiency of the method of images in conjunction with the FMM, the algorithm described
in Section 4 has been implemented by using the free software FastLap, a general FMM-accelerated solver for
Laplace problems developed by Professors Jacob K. White and Luca Daniel at MIT [3]. We assume that NP
fields points are distributed randomly but uniformly inside the whole sphere or in the region a < r 6 5a outside
the sphere, respectively. The experiments are carried out on a Dell OptiPlex GX280 workstation with a CPU
clock rate of 3 GHz and a memory of 2 GB.

In Table 4, timing results of FMM calculation are reported and compared with those obtained
without the FMM acceleration. The expansion order and the partitioning level in the FMM are set to
be 2 and 9, respectively. To eliminate far point image charges, when calculating interior fields, we use
direct summation of series expansion for charges near the center with rs < 0.1a, i.e. 1 out of 1000 source
point charges are treated by direct calculation (see Remark 5). For the same reason, when calculating inte-
rior fields, the number of image charges is adjusted based on how close a source point charge is to the
boundary of the sphere. When calculating exterior fields, the number of image charges is set to be 4
for all source charges. As can be seen, the timing scales as O(N2) without the FMM acceleration, and
linearly with the FMM. Note that in Table 4, NC denotes the number of total charges included in the
FMM cube.

As the final remark, it should be noted that the software we employed, FastLap, is a general multipole-
accelerated solver for Laplace problems. Therefore, it is possible to achieve better efficiency if we could
develop a FMM solver specifically for field computation with our method of images. More importantly, since
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the distribution of image charges are highly nonuniform, we believe much better efficiency can be achieved if
an adaptive FMM is used.

6. Conclusion

In this paper, we have extended the FMM to calculating electrostatic potentials due to point charges inside
or outside a dielectric sphere. Such an extension was made possible by constructing a small number of point
image charges, based on a result of Neumann published in 1883, to approximate the potential accurately in the
whole space. Numerical results have demonstrated the high accuracy of the images in approximating the
potentials, and the high efficiency of using the FMM together with the constructed image charges to evaluate
the resulting potentials. As the images constructed are not uniformly distributed, an adaptive FMM is pre-
ferred to achieve the best efficiency. As a further extension, a single pre-calculated multipole expansion can
be derived to represent the potential produced by the image charges of a given source charge inside the sphere.
These implementation improvements will be addressed in a future publication. Moreover, generalization of
the image charge method to linearized Poisson-Boltzmann equations can also be done, which will be addressed
in another future publication.
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Appendix A. Derivation of image charges of a point charge and a dielectric sphere

A.1. Harmonic expansion of the potential of a point charge in a homogeneous dielectric medium

Suppose that a point charge q is located on the z-axis at z = d, see Fig. 6. Then, it is well-known that the
electric potential at a field point F(r) generated by this single point charge equals to
V ðrÞ ¼ q
4p�R

¼ q
4p�
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ d2 � 2dr cos h
p ; ðA:1Þ
where R is the shortest distance between the point charge and the observation point F, h is the angle between d

and r, and � is the dielectric constant of the homogeneous medium.
If the radius r of the observation point F is greater than d, we may factor out 1/r and expand the square root

in Eq. (A.1) in powers of (d/r) < 1 using Legendre polynomials Pn(x)
z

O
FR

r

q

d εθ

Fig. 6. Point charge in a homogeneous dielectric.
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V ðrÞ ¼ q
4p�r

X1
n¼0

d
r

� �n

P nðcos hÞ: ðA:2Þ
Conversely, if the radius r is less than d, we may factor out 1/d and expand the square root in Eq. (A.1) in
powers of (r/d) < 1 using Legendre polynomials
V ðrÞ ¼ q
4p�d

X1
n¼0

r
d

� �n
P nðcos hÞ: ðA:3Þ
A.2. Source point charge inside the sphere

A.2.1. Interior field

To obtain the potential inside the sphere due to the polarization, we plug the expansion coefficients Bn in
Eq. (4) into Eq. (2) and obtain
X1

n¼0

BnrnP nðcos hÞ ¼
X1
n¼0

q
4p�i

� rn
s

a2nþ1
� c 1þ 1þ c
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� �
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2
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s

a2nþ1
� 2

1� cþ 2n
� rnP nðcos hÞ ¼ S1 þ S2:
The first part S1 becomes exactly the expansion obtained from Eq. (A.3) by putting d = ri and � = �i for a point
charge of magnitude
q0ii ¼ c
a
rs

q

outside the sphere at the inverse point ri. For the second part, we note that
Z 1

ri

1

x
1�c

2 þnþ1
dx ¼ 2
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� 1
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Therefore, we have
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Putting d = x and � = �i in Eq. (A.3), we can see that the inside of the above integral physically represents the
potential generated by charge q00iiðxÞ at x, where
q00iiðxÞ ¼
q
a

cð1þ cÞ
2

x
ri

� ��1�c
2

; ri 6 x:
A.2.2. Exterior field

Substituting the expansion coefficients An in Eq. (3) into Eq. (2), we have the potential in the region outside
the sphere



862 W. Cai et al. / Journal of Computational Physics 223 (2007) 846–864
X1
n¼0

An

rnþ1
P nðcos hÞ ¼

X1
n¼0

qrn
s

4p�i

� 1þ c
2
� 2þ 2c

1� cþ 2n

� �
1

rnþ1
P nðcos hÞ

¼ ð1þ cÞq
4p�ir

X1
n¼0

rs

r

� �n
P nðcos hÞ

þ q
4p�ir

cð1þ cÞ
2

X1
n¼0

2

1� cþ 2n
� rs

r

� �n
P nðcos hÞ ¼ S1 þ S2:
The first series S1 is exactly the expansion obtained from Eq. (A.2) by putting d = rs and � = �i for a point
charge of magnitude
q0io ¼ ð1þ cÞq

at the same location as the source charge. For the second series S2, first we note that
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Then, we can rewrite the second series S2 as
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Now it is easy to see, by putting d = x and � = �i in Eq. (A.2), that the inside of the above integral represents
the potential generated by a point charge q00ioðxÞ at x, where
q00ioðxÞ ¼
q
rs

cð1þ cÞ
2

x
rs

� ��1þc
2

; x 6 rs:
A.3. Source point charge outside the sphere

A.3.1. Exterior field

To calculate the potential in the region outside the sphere in the presence of an external point charge, we
plug the expansion coefficients Dn is Eq. (7) into Eq. (5) and obtain
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If we let d = ri and � = �o in Eq. (A.2), then we can see clearly that the first series S1 corresponds to the expan-
sion of the potential due to a point charge of magnitude
q0oo ¼ �c
a
rs

q

inside the sphere at the inverse point ri. For the second series S2, similarly noting that
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x
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;
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we have
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Likely, if we let d = x and � = �o in Eq. (A.2), we can see that the inside of the above integral physically rep-
resents the potential generated by a point charge q00ooðxÞ at x with
q00ooðxÞ ¼
q
a

cð1� cÞ
2

x
ri

� ��1þc
2

; 0 6 x 6 ri:
A.3.2. Interior field

Finally, plugging the expansion coefficients Cn in Eq. (6) into Eq. (5), we have the potential inside the sphere
X1
n¼0

CnrnP nðcos hÞ ¼
X1
n¼0

q
4p�o

1

rnþ1
s

1� c
2

2þ 2c
1� cþ 2n

� �
� rnP nðcos hÞ

¼ ð1� cÞq
4p�ors

X1
n¼0

r
rs

� �n

P nðcos hÞ

þ q
4p�ors

cð1� cÞ
2

X1
n¼0

2

1� cþ 2n
� r

rs

� �n

P nðcos hÞ ¼ S1 þ S2:
The first part S1 becomes exactly the expansion given by Eq. (A.3) for a point charge of magnitude
q0oi ¼ ð1� cÞq
at the same location as the source point charge. On the other hand, by using the fact that
Z 1

rs

1

x
1�c

2 þnþ1
dx ¼ 2

1� cþ 2n
� 1

r
1�c

2 þn
s

;

we can rewrite the second part S2 as
S2 ¼
q

4p�ors
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2
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2
s
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dx:
The inside of the above integral is the same as the expansion obtained by putting d = x and � = �o in Eq. (A.3)
for a point charge q00oi at x, where
q00oiðxÞ ¼
q
rs

cð1� cÞ
2

x
rs

� ��1�c
2

; rs 6 x:
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