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Abstract In order to solve the magnetohydrodynamics (MHD) equations with a
H(div)-conforming element, a novel approach is proposed to ensure the exact
divergence-free condition on the magnetic field. The idea is to add on each element
an extra interior bubble function from a higher order hierarchical H(div)-conforming
basis. Four such hierarchical bases for the H(div)-conforming quadrilateral, triangu-
lar, hexahedral, and tetrahedral elements are either proposed (in the case of tetrahe-
dral) or reviewed. Numerical results have been presented to show the linear indepen-
dence of the basis functions for the two simplicial elements. Good matrix condition-
ing has been confirmed numerically up to the fourth order for the triangular element
and up to the third order for the tetrahedral element.

Keywords Hierarchical bases · H(div)-conforming elements · Divergence-free
condition

Mathematics Subject Classification (2010) 65N30 · 65F35 · 65F15

1 Introduction

The magnetohydrodynamics (MHD) equations describe the dynamics of a charged
system under the interaction with a magnetic field and the conservation of the mass,
momentum, and energy for the plasma system. Such a dynamics is considered con-
strained as the magnetic field of the system is evolved with the constraint of zero
divergence, namely, ∇ · B = 0. Numerical modeling of plasmas has shown that the
observance of the zero divergence of the magnetic field plays an important role in
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reproducing the correct physics in the plasma fluid [1]. Various numerical techniques
have been devised to ensure the computed magnetic field to maintain divergence-
free [2]. In the original work of [1] a projection approach was used to correct the
magnetic field to have a zero divergence.

A more natural way to satisfy this constraint is through a class of the so-called
constrained transport (CT) numerical methods based on the ideas in [3]. As noted
in [4], a piecewise H(div) vector field on a finite element triangulation of a spatial
domain can be a global H(div) field if and only if the normal components on the
interface of adjacent elements are continuous. Thus, in most of the CT algorithms for
the MHD, the surface averaged magnetic flux over the surface of a 3-D element is
used to represent the magnetic field while the volume averaged conserved quantities
(mass, momentum, and energy) are used.

In the two seminal papers [5, 6], Nédélec proposed to use quantities (moments
of normal and tangential components of vector fields) on edges and faces to define
the finite dimensional space in H(div) and H(curl), respectively. The specific con-
struction of the basis functions in both spaces, specifically in H(div), can be done in
various ways such as the hierarchical type of basis proposed in [7] for both H(div)

and H(curl). Unfortunately, the proposed hierarchical basis for H(div) in [7] turns
out to be erroneous as can be easily checked; for the quadratic polynomial approxi-
mation of the proposed edge-based basis functions happen to be linearly dependent.

In this paper, we will first present a new hierarchical basis functions in H(div)

in the tetrahedral case, for completeness, together with a review of the hierarchical
basis of H(div) for rectangles in 2-D and for a cube in 3-D. An important common
feature of the hierarchical basis functions is the fact that for order p ≥ 4 in the case of
simplexes, the basis functions will include interior bubble basis functions which have
zero normal components on the whole boundary of the element. Therefore, a sim-
ple way to enforce the property of being divergence-free can be easily accomplished
by adding one single (p + 1)th order (any qth order, q ≥ max(m,p + 1),m = 4 for
tetrahedral element, m = 3 for triangular element, and m = 2 for quadrilateral or
hexahedral element) interior bubble function on each element to a pth order H(div)

basis. This extra bubble basis will be able to satisfy the local divergence-free condi-
tion. Due to the fact of normal continuity of the pth order basis across the element
interface and zero normal component of the added-in qth order interior bubble func-
tions, the augmented function space satisfies the divergence-free condition globally.
The H(div) basis on general meshes other than the reference elements mentioned
above are usually constructed by a Piola transform [8] and more recent studies of
the H(div) basis functions on general quadrilateral and hexahedral elements can be
found in [8–10], however, they will not be discussed further in this paper.

The rest of the paper is organized as follows. The constructions of the H(div)

bases are given in Sects. 2–5 for rectangular and triangular elements in 2-D, and
cubic and tetrahedral elements in 3-D. The divergence-free condition is discussed in
Sect. 6. Numerical results on the matrix conditioning are given in Sect. 7. Concluding
remarks are given in Sect. 8.



Divergence-Free H(div)-Conforming Hierarchical Bases for MHD 21

2 Basis Functions for the Quadrilateral Element

In [11], Zaglmayr gave a hierarchical basis for quadrilateral H(div)-conforming ele-
ment. In this section we summarize the result in [11].

The basis functions are constructed on the reference element—a unit square
Q := [0,1]2 [11] with vertexes of V1(0,0), V2(1,0), V3(1,1) and V4(0,1). The coor-
dinate system for the reference element is in terms of the variables (ξ, η). A bilinear
function λi , which is associated with a specific vertex Vi , has been utilized for the
construction. The multiplicative factors of the bilinear function λi have been used to
form the linear function σi , viz.

λ1 := (1 − ξ)(1 − η), σ1 := (1 − ξ) + (1 − η),

λ2 := ξ(1 − η), σ2 := ξ + (1 − η),

λ3 := ξη, σ3 := ξ + η,

λ4 := (1 − ξ)η, σ4 := (1 − ξ) + η.

(1)

The bilinear function has this favorable property:

λi |Vj
= δij , (2)

where δij is the Kronecker delta. The edge e := [Vi,Vj ], which points from vertex
Vi to vertex Vj , is parameterized by

ζe := σj − σi ∈ [−1,1]. (3)

For convenience of basis construction, the linear edge-extension parameter is also
defined, viz.

λe := λi + λj ∈ [0,1], (4)

which is 1 on edge e := [Vi,Vj ] and 0 on the opposite edge. Note that the unit tan-
gential vector τe and the outward unit normal vector ne can be deduced as

�τe = 1

2
∇ζe, ne = ∇λe. (5)

2.1 Edge-Based Functions

These functions are further grouped into two categories: the lowest-order and higher-
order functions.

Lowest-Order Functions These functions are associated with the four edges. By
construction each function is perpendicular to the associated edge and has unit normal
component on the associated edge. Furthermore the divergence of each function is
unit. The shape function is given by

ψRT0
ei

= 1

2
λei

(∇ × ζei
), i = {1,2,3,4}, (6)

which has the property

�τei
· ψRT0

ei
= 0, nei

· ψRT0
ei

|ei
= 1, ∇ · ψRT0

ei
= 1. (7)
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Higher-Order Functions The function is taken to be a curl field of a scalar function
in order to be free of divergence. The basis function is

ψ
j+1
ei

= ∇ × (
λei

Lj+2(ζei
)
)
, i = {1,2,3,4}, 0 ≤ j ≤ p − 1, (8)

where the function Ln(•) is the so-called integrated Legendre polynomial of degree n

(as given in (29) with t = 1) [11]. The obvious property is

∇ · ψj+1
ei

= 0, i = {1,2,3,4}, 0 ≤ j ≤ p − 1. (9)

2.2 Interior Functions

The interior functions are classified into three categories.

Type 1 (Curl Field) The shape functions are given as

ψ
Q1
ij = ∇ × (

Li+2(2ξ − 1)Lj+2(2η − 1)
)
, 0 ≤ i, j ≤ p − 1. (10)

These functions are divergence free, viz.

∇ · ψQ1
ij = 0, 0 ≤ i, j ≤ p − 1. (11)

Type 2 The formula of these functions is given as

ψ
Q2
ij = Li+2(2ξ − 1)L′

j+2(2η − 1)îξ + L′
i+2(2ξ − 1)Lj+2(2η − 1)ĵη,

0 ≤ i, j ≤ p − 1. (12)

On the boundary of the reference element the normal component of these functions
vanishes, viz.

ne · ψQ2
ij |e = 0, 0 ≤ i, j ≤ p − 1, (13)

which justifies one type of interior functions.

Type 3 The formula of these functions is

ψ
Q

ξ
3

i = Li+2(2ξ − 1)îξ , ψ
Q

η
3

i = Li+2(2η − 1)ĵη, 0 ≤ i ≤ p − 1. (14)

Again on the boundary of the reference element the normal component of these func-
tions vanishes, viz.

ne · ψQ
ξ
3

i

∣∣
e
= 0, ne · ψQ

η
3

i

∣∣
e
= 0, 0 ≤ i ≤ p − 1. (15)

Table 1 shows the decomposition of the space Qp+1,p × Qp,p+1 for the H(div)-
conforming quadrilateral element.

3 Basis Functions for the Hexahedral Element

The reference element is defined for a unit cube H := [0,1]3 in [11]. The vertexes of
the cube are V1(0,0,0), V2(1,0,0), V3(1,1,0), V4(0,1,0), V5(0,0,1), V6(1,0,1),
V7(1,1,1), and V8(0,1,1). The basis functions are expressed in terms of the trilinear
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Table 1 Decomposition of the
space Qp+1,p × Qp,p+1 for
the H(div)-conforming
quadrilateral element

Decomposition Dimension

Edge-based functions 4(p + 1)

Interior functions 2p(p + 1)

Total 2(p + 2)(p + 1) = Dim(Qp+1,p × Qp,p+1)

function λj , which is 1 at the vertex Vj and 0 at all other vertexes. Along with the
linear function σj and in terms of the coordinates variables (ξ, η, ζ ) they are given as

λ1 := (1 − ξ)(1 − η)(1 − ζ ), σ1 := (1 − ξ) + (1 − η) + (1 − ζ ),

λ2 := ξ(1 − η)(1 − ζ ), σ2 := ξ + (1 − η) + (1 − ζ ),

λ3 := ξη(1 − ζ ), σ3 := ξ + η + (1 − ζ ),

λ4 := (1 − ξ)η(1 − ζ ), σ4 := (1 − ξ) + η + (1 − ζ ).

λ5 := (1 − ξ)(1 − η)ζ, σ5 := (1 − ξ) + (1 − η) + ζ,

λ6 := ξ(1 − η)ζ, σ6 := ξ + (1 − η) + ζ,

λ7 := ξηζ, σ7 := ξ + η + ζ,

λ8 := (1 − ξ)ηζ, σ8 := (1 − ξ) + η + ζ.

(16)

The edge e := [Vi,Vj ], which points from vertex Vi to vertex Vj , is parameterized
by

μe := σj − σi ∈ [−1,1]. (17)

The tangential vector associated with the edge e is given by �τe = 1
2∇μe. The edge

extension parameter λe := λi + λj ∈ [0,1] is 1 on the edge e and 0 on all other edges
that are parallel to the edge e. The face f = [Vi,Vj ,Vk,V
] where the vertexes Vi

and Vk are not connected by an edge can be parameterized by

(ξf , ηf ) := (σi − σj , σi − σ
) ∈ [−1,1] × [−1,1]. (18)

The linear face extension parameter λf = λi + λj + λk + λ
 is equal to 1 on the
face f and 0 on the opposite face. The outward unit normal vector of face f can be
obtained by nf = ∇λf .

3.1 Face-Based Functions

In this subsection we record the results in [11]. We have also fixed one error in [11].
These functions are associated with the six faces whose formulas are classified into
two groups.

Lowest-Order Raviart–Thomas Functions

ψ
R T 0
fi

= λf nf , i = 1,2, . . . ,6. (19)

Higher-Order Functions (Divergence-Free) These functions are constructed as curl
fields of certain vectors in order to be divergence-free. The formulas are given as [11]:

ψ
fk

i,j = ∇ × (
λf

(
Lj+2(ηf )∇Li+2(ξf ) − Li+2(ξf )∇Lj+2(ηf )

))
,

0 ≤ i, j ≤ p − 1, k = 1,2, . . . ,6. (20)
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ψ
fk

i = ∇ × (
λf Li+2(ξf )∇ηf

)
, 0 ≤ i ≤ p − 1, k = 1,2, . . . ,6. (21)

ψ
fk

j = ∇ × (
λf Lj+2(ηf )∇ξf

)
, 0 ≤ j ≤ p − 1, k = 1,2, . . . ,6. (22)

3.2 Interior Functions

The interior functions are further classified into three categories. The triplet (ξ1, η2,

ζ3) := (2ξ − 1,2η − 1,2ζ − 1) is used in the formulas. The function 
n(•) is the
classical un-normalized Legendre polynomial of degree n. While we here record the
results in [11], we have implemented the correction of a number of mistakes in [11]
as well.

Type 1 (Divergence-Free) These functions are taken to be the curl fields of certain
vector functions that are associated with the H(curl)-conforming element.

ψ
H1

1
i,j,k = 4Li+2(ξ1)
j+1(η2)
k+1(ζ3)îξ − 4
i+1(ξ1)
j+1(η2)Lk+2(ζ3)k̂ζ ,

0 ≤ i, j, k ≤ p − 1.

ψ
H2

1
i,j,k = 4
i+1(ξ1)Lj+2(η2)
k+1(ζ3)ĵη − 4
i+1(ξ1)
j+1(η2)Lk+2(ζ3)k̂ζ ,

0 ≤ i, j, k ≤ p − 1.

ψ
H3

1
j,k = 2
j+1(η2)Lk+2(ζ3)k̂ζ − 2Lj+2(η2)
k+1(ζ3)ĵη,

0 ≤ j, k ≤ p − 1.

ψ
H4

1
i,k = 2Li+2(ξ1)
k+1(ζ3)îξ − 2
i+1(ξ1)Lk+2(ζ3)k̂ζ ,

0 ≤ i, k ≤ p − 1.

ψ
H5

1
i,j = 2Li+2(ξ1)
j+1(η2)îξ − 2
i+1(ξ1)Lj+2(η2)ĵη,

0 ≤ i, j ≤ p − 1.

(23)

Type 2 These functions are linear combinations of certain components in the above
type.

ψ
H1

2
i,j,k = Li+2(ξ1)
j+1(η2)
k+1(ζ3)îξ + 
i+1(ξ1)Lj+2(η2)
k+1(ζ3)ĵη,

0 ≤ i, j, k ≤ p − 1.

ψ
H2

2
j,k = Lj+2(η2)
k+1(ζ3)ĵη + 
j+1(η2)Lk+2(ζ3)k̂ζ , 0 ≤ j, k ≤ p − 1.

ψ
H3

2
i,k = 
i+1(ξ1)Lk+2(ζ3)k̂ζ + Li+2(ξ1)
k+1(ζ3)îξ , 0 ≤ i, k ≤ p − 1.

ψ
H4

2
i,j = Li+2(ξ1)
j+1(η2)îξ + 
i+1(ξ1)Lj+2(η2)ĵη, 0 ≤ i, j ≤ p − 1.

(24)
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Table 2 Decomposition of the space (Qn(K))3 for the H(div)-conforming hexahedral element

Decomposition Dimension

Face-based face functions
(lowest order RT)

6

Face-based face functions
(higher order)

6p(p + 2)

Interior functions 3p(p + 1)2

Total 3(p + 2)(p + 1)2 = dimQp+1,p,p × Qp,p+1,p × Qp,p,p+1

Type 3 These functions are taken as certain components in Type 2.

ψ
H1

3
i = Li+2(ξ1)îξ , 0 ≤ i ≤ p − 1.

ψ
H2

3
j = Lj+2(η2)ĵη, 0 ≤ j ≤ p − 1.

ψ
H3

3
k = Lk+2(ζ3)k̂ζ , 0 ≤ k ≤ p − 1.

(25)

Two remarks are in place.

• All the interior basis functions are linearly independent, which can be verified
easily.

• The normal traces of these interior functions vanish on the boundary ∂H of the
reference hexahedral element. This is due to the fact that on a certain face f either
one of the standard unit vectors is perpendicular to the normal vector of the face
nf or to the fact that the integrated Legendre polynomials are evaluated at 1 or −1,
which leads to 0.

Table 2 shows the decomposition of the space Qp+1,p,p × Qp,p+1,p × Qp,p,p+1
for the H(div)-conforming hexahedral element.

4 Basis Functions for the Triangular Element

The result on the basis construction has been reported in [12]. For the completeness
of the current study, we record the basis functions in this section.

Any point in the 2-simplex K2 is uniquely located in terms of the local coordinate
system (ξ, η). The vertexes are numbered as v0(0,0),v1(1,0),v2(0,1). The barycen-
tric coordinates are given as

λ0 := 1 − ξ − η, λ1 := ξ, λ2 := η. (26)

The directed tangent on a generic edge ej = [j1, j2] is similarly defined as in (40) for
the 3-dimensional case. In the same manner the edge is also parameterized as in (41).
A generic edge can be uniquely identified with

ej := [j1, j2], j1 = {0,1}, j1 < j2 ≤ 2, j = j1 + j2. (27)

The 2-dimensional vectorial curl operator of a scalar quantity, which is used in our
construction, needs a proper definition. We use the following 2-D curl operator

curl(u) := ∇ × u :=
[
∂u

∂η
,−∂u

∂ξ

]τ

. (28)



26 W. Cai et al.

Based upon the shape functions for the 3-dimensional H(div)-conforming tetrahe-
dral elements in Sect. 5 and using the technique of dimension reduction we construct
the basis for the H(div)-conforming triangular elements in two dimensions. How-
ever, it is easy to see that the two groups for the face functions cannot be appropri-
ately modified for our purpose. Instead we borrow the idea of Zaglmayr in the disser-
tation [11], viz., we combine the edge-based shape functions in [11] with our newly
constructed edge-based and bubble interior functions. In [11] Zaglmayr had applied
the so-called scaled integrated Legendre polynomials in the construction, viz.

Ls
n(x, t) := tn−1

∫ x

−t


n−1

(
ξ

t

)
dξ, n ≥ 2, t ∈ (0,1], (29)

where 
n(x) is the nth order Legender polynomial.

4.1 Edge Functions

For the completeness of our basis construction, in this subsection we record the re-
sults in [11]. Associated with each edge the formulas for these functions are given
as

Φ
N0
e[k1,k2] = λk2∇ × λk1 − λk1∇ × λk2 (30)

for the lowest-order approximation and

Φ
j
e[k1,k2] = ∇ × (

Ls
j+2(γek

, λk2 + λk1)
)
, j = 0, . . . , p − 1 (31)

for higher-order approximations.

4.2 Interior Functions

The interior functions are further classified into two categories: edge-based and bub-
ble interior functions. By construction the normal component of each interior function
vanishes on either edge of the reference 2-simplex K2, viz.

nej · Φt = 0, j = {1,2,3}, (32)

where nej is the unit outward normal vector to edge ej .

Edge-Based Interior Functions The tangential component of each edge-based func-
tion does not vanish only on the associated edge ek := [k1, k2] but vanishes on the
other two edges, viz.

τ ej · Φt,i
e[k1,k2] = 0, ej �= ek, (33)

where τ ej is the directed tangent along the edge ej := [j1, j2]. The following basis
functions are proposed here:

Φ
t,i
e[k1,k2] = Ciλk1λk2(1 − λk1)

iP
(0,2)
i

(
2λk2

1 − λk1

− 1

)
τ ek

|τ ek | , (34)

where the function P
(0,2)
i (•) is the classical un-normalized Jacobi polynomial of de-

gree i with a single variable [13], and the scaling coefficient is given by

Ci = √
2(i + 2)(i + 3)(2i + 3)(2i + 5), i = 0,1, . . . , p − 2. (35)
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Table 3 Decomposition of the
space (Pp(K))2 for the
H(div)-conforming triangular
element

Decomposition Dimension

Edge functions 3(p + 1)

Edge-based interior functions 3(p − 1)

Interior bubble functions (p − 2)(p − 1)

Total (p + 1)(p + 2) = dim(Pp(K))2

The following orthonormal property of edge-based interior functions can be
proved:

〈
Φ

t,m
e[k1,k2],Φ

t,n
e[k1,k2]

〉∣∣
K2 = δmn, {m,n} = 0,1, . . . , p − 2. (36)

Interior Bubble Functions The interior bubble functions vanish on the entire bound-
ary ∂K2 of the reference 2-simplex K2. The formulas of these functions are given
as

Φt,�ei
m,n = Cm,nλ0λ1λ2(1 − λ0)

mP (2,2)
m

(
λ1 − λ2

1 − λ0

)
P (2m+5,2)

n (2λ0 − 1)�ei, i = 1,2,

(37)

where

Cm,n =
√

(m + 3)(m + 4)(2m + 5)(2m + n + 6)(2m + n + 7)(2m + 2n + 8)

(m + 1)(m + 2)(n + 1)(n + 2)
,

and

0 ≤ {m,n},m + n ≤ p − 3.

One can again prove the orthonormal property of the interior bubble functions
〈
Φt,�ei

m1,n1
,Φ

t,�ej
m2,n2

〉∣∣
K2 = δm1m2δn1n2 , (38)

where

0 ≤ {m1,m2, n1, n2},m1 + n1,m2 + n2 ≤ p − 3, {i, j} = 1,2.

Table 3 shows the decomposition of the space (Pp(K))2 for the H(div)-
conforming triangular element.

5 Basis Functions for the Tetrahedral Element

Our constructions are motivated by the work on the construction of H(div)-
conforming hierarchical bases for tetrahedral elements [7]. We construct shape func-
tions for the H(div)-conforming tetrahedral element on the canonical reference 3-
simplex. The shape functions are grouped into several categories based upon their
geometrical entities on the reference 3-simplex [7]. The basis functions in each cate-
gory are constructed so that they are orthonormal on the reference element.
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Any point in the 3-simplex K3 is uniquely located in terms of the local coordinate
system (ξ, η, ζ ). The vertexes are numbered as v0(0,0,0),v1(1,0,0),v2(0,1,0),

v3(0,0,1). The barycentric coordinates are given as

λ0 := 1 − ξ − η − ζ, λ1 := ξ, λ2 := η, λ3 := ζ. (39)

The directed tangent on a generic edge ej = [j1, j2] is defined as

τ ej := τ [j1,j2] = vj2 − vj1, j1 < j2. (40)

The edge is parameterized as

γej
:= λj2 − λj1, j1 < j2. (41)

A generic edge can be uniquely identified with

ej := [j1, j2], j1 = 0,1,2, j1 < j2 ≤ 3, j = j1 + j2 + sign(j1), (42)

where sign(0) = 0. Each face on the 3-simplex can be identified by the associated
three vertexes, and is uniquely defined as

fj1 := [j2, j3, j4], 0 ≤ {j1, j2, j3, j4} ≤ 3, j2 < j3 < j4. (43)

The standard bases in Rn are noted as �ei , i = 1, . . . , n, and n = {2,3}.
5.1 Face Functions

The face functions are further grouped into two categories: edge-based face functions
and face bubble functions.

Edge-Based Face Functions These functions are associated with the three edges of
a certain face fj1 , and by construction all have non-zero normal components only on
the associated face fj1 , viz.

nfjk · Φfj1 ,i

e[k1,k2] = 0, jk �= j1, (44)

where nfjk is the unit outward normal vector to face fjk
.

The edge-based face functions for higher order have been proposed in [7] as fol-
lows:

Φ̃
fj1 ,i

e[k1,k2] = li (γek
)λk1∇λk2 × ∇λk3, i = 0, . . . , p − 1. (45)

For instance, for the face opposite to the vertex v0(0,0,0), f0 := [1,2,3], the face
functions related to edge e[1,2] are given by

Φ̃
f0,i
e[1,2] = li (λ3 − λ2)λ1∇λ2 × ∇λ3, i = 0, . . . , p − 1. (46)

However, it can be checked that the basis function given in (45) in fact are not
independent for p = 2 (as the sum of the 12 basis functions given in (45) for p = 2
on all six faces in fact equals 0, which can be easily verified by the symbolic Maple
program—the Maple code is available from the first author) and thus the proposed
basis function is not complete. To remedy this degeneracy, two kinds of construction
of hierarchical high-order independent edge-based face functions will be presented
here, for which the first one was first reported in [12] while the second kind is pro-
posed here below in (51).
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• First kind high-order independent edge-based face functions

In [12], the following orthonormal basis functions are given:

Φ
fj1 ,i

e[k1,k2] = Ciλk3(1 − λk1)
iP

(3,0)
i

(
2λk2

1 − λk1

− 1

) ∇λk1 × ∇λk2

|∇λk1 × ∇λk2 |
, (47)

where

Ci = √
3(2i + 4)(2i + 5), i = 0,1, . . . , p − 1,

and

k1 = {j2, j3}, k2 = {j3, j4}, k1 < k2, k3 = {j2, j3, j4} \ {k1, k2}.
One can prove the orthonormal property of these edge-based face functions,

〈
Φ

fj1 ,m

e[k1,k2],Φ
fj1 ,n

e[k1,k2]
〉∣∣

K3 = δmn, {m,n} = 0,1, . . . , p − 1, (48)

where δmn is the Kronecker delta. Note that, with this construction, the edge-based
face functions are all linearly independent, which is also verified by the fact that in
the spectrum of the mass (Gram) matrix, none of the eigenvalues is 0.

• Second kind high-order independent edge-based face functions

An alternative approach using the idea of recursion from [7] can also be used to
construct independent edge-based face functions as follows.

For p = 1, for each edge we have one face function for this edge as proposed
in [7],

Φ̃
fj1 ,0
e[k1,k2] = λk1∇λk2 × ∇λk3, (49)

and for p = 2, one additional new basis function can be constructed as

Φ̃
fj1 ,1
e[k1,k2] = λk1λk2∇λk3 × ∇λk1, (50)

which can be shown to satisfy the condition (44), and for p ≥ 3, the basis functions
are given by

Φ̃
fj1 ,i+1
e[k1,k2] ≡ 
i(γek

)Φ̃
fj1 ,1
e[k1,k2] + 
i−1(γek

)Φ̃
fj1 ,0
e[k1,k2]

= 
i(γek
)[λk1λk2∇λk3 × ∇λk1 ]

+ 
i−1(γek
)[λk1∇λk2 × ∇λk3], i = 1, . . . , p − 2. (51)

It can be shown again numerically that there are exactly p functions that are indepen-
dent and whose normal component is non-zero only on the associated edge ek .

Face Bubble Functions The face bubble functions which belong to each specific
group are associated with a particular face fj1 . They vanish on all edges of the refer-
ence 3-simplex K3, and the normal components of which vanish on other three faces,
viz.

nfjk · Φfj1
m,n = 0, jk �= j1. (52)

The explicit formula is given as
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Φ
fj1
m,n = ι(1 − λj2)

m(1 − λj2 − λj3)
nP (2n+3,2)

m

(
2λj3

1 − λj2

− 1

)

× P (0,2)
n

(
2λj4

1 − λj2 − λj3

− 1

) ∇λj3 × ∇λj4

|∇λj3 × ∇λj4 |
, (53)

where

ι = Cn
mλj2λj3λj4, (54)

where

Cn
m =

√
(2n + 3)(m + n + 3)(m + 2n + 4)(m + 2n + 5)(2m + 2n + 7)(2m + 2n + 8)(2m + 2n + 9)√

(m + 1)(m + 2)
,

(55)

and

0 ≤ {m,n},m + n ≤ p − 3. (56)

By construction the face bubble functions share again the orthonormal property on
the reference 3-simplex K3:

〈
Φ

fj1
m1,n1 ,Φ

fj1
m2,n2

〉∣∣
K3 = δm1m2δn1n2 ,

0 ≤ {m1,m2, n1, n2},m1 + n1,m2 + n2 ≤ p − 3. (57)

5.2 Interior Functions

The interior functions are classified into three categories: edge-based, face-based,
and bubble interior functions. By construction the normal component of each interior
function vanishes on either face of the reference 3-simplex K3, viz.

nfj · Φt = 0, j = {0,1,2,3}. (58)

Edge-Based Interior Functions The tangential component of each edge-based func-
tion does not vanish only on the associated edge ek := [k1, k2] but vanishes on all
other five edges, viz.

τ ej · Φt,i
e[k1,k2] = 0, ej �= ek, (59)

where τ ej is the directed tangent along the edge ej := [j1, j2]. The shape functions
are given as

Φ
t,i
e[k1,k2] = Ciλk1λk2(1 − λk1)

iP
(1,2)
i

(
2λk2

1 − λk1

− 1

)
τ ek

|τ ek | , (60)

where

Ci = (i + 3)

√
(2i + 4)(2i + 5)(2i + 7)

i + 1
, i = 0,1, . . . , p − 2.

Again one can prove the orthonormal property of edge-based interior functions:
〈
Φ

t,m
e[k1,k2],Φ

t,n
e[k1,k2]

〉∣∣
K3 = δmn, {m,n} = 0,1, . . . , p − 2. (61)
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Face-Based Interior Functions These functions which are associated with a partic-
ular face fj1 have non-zero tangential components on their associated face only, and
have no contribution to the tangential components on all other three faces, viz.

nfjk × Φ
t,fj1
m,n = 0, jk �= j1. (62)

Further each face-based interior function vanishes on all the edges of the 3-simplex
K3, viz.

τ ek · Φt,fj1
m,n = 0. (63)

The formulas of these functions are given as

Φ
t,f1

j1
m,n = ι(1 − λj2)

m(1 − λj2 − λj3)
nP (2n+3,2)

m

(
2λj3

1 − λj2

− 1

)

× P (0,2)
n

(
2λj4

1 − λj2 − λj3

− 1

)
τ [j2,j3]

|τ [j2,j3]| ,

Φ
t,f2

j1
m,n = ι(1 − λj2)

m(1 − λj2 − λj3)
nP (2n+3,2)

m

(
2λj3

1 − λj2

− 1

)

× P (0,2)
n

(
2λj4

1 − λj2 − λj3

− 1

)
τ [j2,j4]

|τ [j2,j4]| ,

(64)

where ι is given in (54) and 0 ≤ {m,n},m + n ≤ p − 3. The face-based interior
functions enjoy the orthonormal property on the reference 3-simplex K3:

〈
Φ

t,fij1
m1,n1 ,Φ

t,fij1
m2,n2

〉∣∣
K3 = δm1m2δn1n2,

i = {1,2}, 0 ≤ {m1,m2, n1, n2},m1 + n1,m2 + n2 ≤ p − 3. (65)

Interior Bubble Functions The interior bubble functions vanish on the entire bound-
ary ∂K3 of the reference 3-simplex K3. The formulas of these functions are given
as

Φ
t,�ei


,m,n = χP
(2m+2n+8,2)

 (2λ1 − 1)P (2n+5,2)

m

(
2λ2

1 − λ1
− 1

)

× P (2,2)
n

(
2λ3

1 − λ1 − λ2
− 1

)
�ei, i = 1,2,3, (66)

where

χ = C
,m,nλ0λ1λ2λ3(1 − λ1)
m(1 − λ1 − λ2)

n,

where

C
,m,n = C1

,m,nC

2

,m,n,

where

C1

,m,n =

√
(
 + 2m + 2n + 9)(
 + 2m + 2n + 10)(2
 + 2m + 2n + 11)(m + 2n + 6)

(
 + 1)(m + 1)(n + 1)
,



32 W. Cai et al.

Table 4 Decomposition of the
space (Pp(K))3 for the
H(div)-conforming tetrahedral
element

Decomposition Dimension

Edge-based face
functions

12p

Face bubble functions 2(p − 2)(p − 1)

Edge-based interior
functions

6(p − 1)

Face-based interior
functions

4(p − 2)(p − 1)

Interior bubble functions (p − 3)(p − 2)(p − 1)/2

Total (p + 1)(p + 2)(p + 3)/2 = dim(Pp(K))3

C2

,m,n =

√
(m + 2n + 7)(2m + 2n + 8)(n + 3)(n + 4)(2n + 5)

(
 + 2)(m + 2)(n + 2)
,

and

0 ≤ {
,m,n}, 
 + m + n ≤ p − 4.

Again, one can show the orthonormal property of the interior bubble functions
〈
Φ

t,�ei


1,m1,n1
,Φ

t,�ej


2,m2,n2

〉∣∣
K3 = δ
1
2δm1m2δn1n2,

where

0 ≤ {
1, 
2,m1,m2, n1, n2}, 
1 + m1 + n1, 
2 + m2 + n2 ≤ p − 4, {i, j} = 1,2,3.

In Table 4 we summarize the decomposition of the space (Pp(K))3 for the
H(div)-conforming tetrahedral element.

6 The Divergence-Free Condition

For a pth order polynomial approximation, in order to ensure the divergence-free
condition, the idea is to include a higher-order interior bubble function χb , say χ

p+1
b

or χ
q
b , q = max(m,p + 1) for the simplexes ( m = 3 for triangular element and m =

4 for tetrahedral element) and q = max(2,p + 1) for rectangular and hexahedral
elements, as an extra basis function. To satisfy the condition

∇ · B = 0 (67)

for the Maxwell equation or

∇ · u = 0 (68)

for the incompressible fluid flow, one can impose the condition

∇ · (u+Cχχ
q
b

) = 0 (69)

to solve the unknown coefficient Cχ . For the triangular element, the interior bubble
function for degree p is given in (37). For the tetrahedral element, the interior bubble
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function of degree p is given in (66). For the quadrilateral element, one can construct
the interior bubble function of degree p as

χ
p

Qb
= Lp+2(2ξ − 1)L2(2η − 1)îξ + L2(2ξ − 1)Lp+2(2η − 1)ĵη. (70)

For the hexahedral element, one can construct the interior bubble function of degree
p as

χ
p

Hb
= Lp+2(ξ1)L2(η2)L2(ζ3)îξ + L2(ξ1)Lp+2(η2)L2(ζ3)ĵη

+ L2(ξ1)L2(η2)Lp+2(ζ3)k̂ζ . (71)

7 Conditioning of Matrices

The purpose of this section is twofold. Firstly, we check numerically that the newly
constructed basis functions for H(div)-conforming triangular and tetrahedral ele-
ments are linearly independent, which is manifested by the fact that, for each particu-
lar approximation order up to degree four, the condition number of the corresponding
mass matrix is finite. Secondly, we want to show that for the approximation up to
order three both the mass and the stiffness matrices are reasonably well-conditioned.

The components of the mass matrix are defined as

M
1,
2 := 〈Φ
1,Φ
2〉|Kd , d = 2,3. (72)

The mass matrix M is symmetric and positive definite, and therefore has real positive
eigenvalues. The condition number of a real symmetric positive definite matrix A is
calculated by the formula

κ(A) = λmax

λmin
, (73)

where λmax and λmin are the maximum and minimum eigenvalues of the matrix A,
respectively. For the incompressible fluid flows, e.g., governed by the Navier–Stokes
equations [14] or by the magnetohydrodynamics equations [15], the authors [14, 15]
have applied the mixed finite element for the spatial discretization. In particular,
they [14, 15] have used the H(div)-conforming element for the Laplacian �u of the
velocity u. In this case, we have the stiffness matrix S, which is defined component-
wise as

S
1,
2 := 〈∇Φ
1 : ∇Φ
2〉|Kd , d = 2,3. (74)

The stiffness matrix S is symmetric and semi-positive definite, and therefore has real
non-negative eigenvalues. The condition number of the stiffness matrix S is calcu-
lated by the formula (73) with the 0 eigenvalue excluded.

With the triangular element and for the polynomial approximations p = {1,2,3,4},
the conditioning is summarized in Table 5.

From the table we can see that the condition number is bounded for each order of
approximation. Moreover, up to the fourth order, the mass and stiffness matrices are
both well conditioned.

With the tetrahedral element and for the polynomial approximations p =
{1,2,3,4}, the condition numbers of the mass matrix are shown in Table 6.
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Table 5 Condition numbers of
the mass matrix M and stiffness
matrix S from the basis for the
H(div)-conforming triangular
element

Order p Mass Stiffness

1 2.016e1 1.040e1

2 8.804e1 5.959e1

3 9.847e2 4.197e2

4 1.286e4 8.843e3

Table 6 Condition numbers of the mass matrix M and stiffness matrix S from the bases with two different
kinds of edge-based face function for the H(div)-conforming tetrahedral element

Order
p

Mass Stiffness Ratio

First kind Second kind First kind Second kind Mass Stiff.

1 3.084e1 3.084e1 1.989e1 1.989e1 1.000e0 1.000e0

2 6.987e3 7.733e4 3.395e3 5.917e4 0.090e0 0.057e0

3 3.412e6 2.289e6 1.094e6 1.191e6 1.491e0 0.919e0

4 5.972e9 2.717e7 2.883e9 2.372e7 2.198e2 1.215e2

Again, from this table we see that the condition number is finite for each order of
approximation. Further up to the third order, both the mass and the stiffness matrices
are well conditioned. For order p = 2 the conditioning is better with the first kind
edge-based face basis, while for p = 4, the conditioning is better with the second
kind edge-based face basis. For the third order p = 3, the performance with both
kinds of edge-based face basis is about the same.

8 Concluding Remarks

In this paper we focus our attention on hierarchical H(div) basis functions for solving
the magnetohydrodynamics (MHD) equations numerically so that the divergence-free
condition on the magnetic field is rigorously guaranteed. The idea is to use an inte-
rior bubble function from the proposed high-order hierarchical basis as the additional
freedom to impose the divergence-free Gauge condition for the magnetic field. We
have summarized four bases for the H(div)-conforming elements, viz. the quadri-
lateral and triangular elements for 2-D and the hexahedral and tetrahedral elements
for 3-D. The linear independence of the basis functions for the two simplicial ele-
ments has numerically been checked. Good matrix (mass and stiffness) conditioning
has also been shown up to the fourth order for 2-D and up to the third order for 3-D.
Further work will include the implementation of the proposed divergence-free basis
to solve the magnetohydrodynamics (MHD) equations in 2-D and 3-D.
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