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Abstract

In this paper we show how the canonical SEIR model may not be suit-
able for modeling the spread of SARS-CoV-2 within a small community
and at short time scales. We propose a novel model that encapsulates
the granularity of small population dynamics and highlight its two most
unique features: (1) an exponentially decaying and sinusoidal transmis-
sion coefficient, which is a function of time, population, and relative risk
the population as a whole takes on, and (2) a recovery coefficient that
decays exponentially and is in sinusoidal phase with the transmission co-
efficient. The two rate functions are studied, and their predictive useful-
ness is shown when substituted for the constant coefficients that control
population flux through the categories of the model. A simple stability
analysis is performed and a proxy for a dynamic reproductive number is
discussed.

1 Introduction

The canonical Susceptible-Exposed-Infected-Recovered (SEIR) model is a pow-
erful system of ordinary differential equations (ODEs) that give predictive in-
sight into epidemic dynamics. From their inception, this system of ODEs has
been linked together through constant rate coefficients and the timescale of ob-
servation is dependent upon how fast the infection of interest propagates through
the population via the force of infection, whether or not the population can re-
cover, become re-infected or, in some cases, not recover at all. However, SEIR
models break down in their useful capacity when applied to small-scale popula-
tions and for short timescales. Using non-constant transmission rates that are
functions of time and additional variables was used successfully in [3] to enhance
the validity and accuracy of simulations when compared to real data.
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In that spirit, we highlight an analysis providing evidence that the trans-
mission and, presumably recovery rates, of SARS-CoV-2 may not be constant
in Section 3. We propose functions to describe these two rates, which we then
incorporate into a SIR model in Section 5. We conclude with a discussion of
the model including predictions.

2 Background: Standard SEIR Model

The standard Susceptible (S) Exposed (E) Infected (I) Recovered (R) or SEIR
model is widely used within the study of epidemiology to model the interactions
between individuals of different subsections of a population (for an introduction,
see [5, 1]). The susceptible group of the population represents the individuals
who have not yet contracted the disease but could possibly contract it in the
future. The exposed group represents those who have come into contact with
an infected person but have not yet developed symptoms of the disease nor
are infectious. The infected group contains those of the population who have
contracted the disease and have developed symptoms are infectious. Lastly, the
recovered group of the population represents individuals who have recovered
from the disease and are no longer experiencing symptoms. A standard SEIR
model is defined by the following differential equations (see Equations 1) and
depicted below (see Figure 1):

dS

dt
= −β I(t)S(t)

N
dE

dt
= β

I(t)S(t)

N
− δE(t) (1)

dI

dt
= δE(t)− γI(t)

dR

dt
= γI(t)

Figure 1: Standard SEIR diagram for Equations (1).

This compartmental model tracks the movement of individuals from one
sub-group to another while conserving the total population N. Therefore at any
given instance in time S(t)+E(t)+I(t)+R(t) = N . Individuals in a given sub-
group transition to other sub-groups at rates defined by model parameters β,
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δ, and γ. The parameter β represents the rate at which individuals transition
from the susceptible (S) to the exposed (E) group and is commonly referred
to as the transmission rate. The parameter δ represents the time period from
when an individual is exposed to the disease to when that individual begins
experiencing symptoms. This rate is often called the incubation rate and is
generally defined as 1

Latent Period , where Latent Period is in days. The parameter
γ models recovery period or 1

Days Until Recovered .

3 Applying an SEIR model to SARS-CoV-2 data

In this section we offer evidence that SARS-CoV2 cannot be described by an
SEIR model by demonstrating that the transmission and recovery rates are not
constant for data collected from the Dallas metropolitan area.

3.1 Parameters

To evaluate our model, we use data gathered from [4]. The parameters used to
tune our SEIR model were estimated by referring to work done by [7]. In this
study, we estimated the incubation period to be an average of 7 days, resulting
in an incubation rate of 0.14. The recovery rate is estimated to be about 21
days or a rate of 0.048. All parameters can be found in Table 1 below.

Parameter Value
Transmission Rate (β) 0.4

Incubation Rate (δ) 0.14
Incubation Period ( 1

δ ) 7 days
Recovery Rate (γ) 0.048

Recovery Period ( 1
γ ) 21 days

Table 1: SEIR model parameters gathered from [7].

3.2 Data

To determine the appropriate parameter values to fit the standard model, we fit
the model to confirmed COVID-19 cases on the Southern Methodist University
(SMU) campus, cumulative COVID-19 cases in Dallas county, and cumulative
cases in the United States as a whole. The SMU dataset [10] was updated daily
and spans from August 16 to the end of the 2021 Spring semester. This dataset
records the number of cumulative cases and active cases of students and faculty
on SMU campus. The data also provides the number of individuals who are
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quarantined or isolated in on-campus isolation dorms or elsewhere. From this
dataset, we used the cumulative and active case counts to fit a standard SEIR
model and to evaluate the model parameters. The cumulative case count logs
the total number of COVID-19 cases that have occurred since August 8th 2020.
The active case count keeps track of the total amount of people who currently
are experiencing symptoms of COVID-19.

The data on the Dallas County COVID-19 cases [9] was provided by Johns
Hopkins University Center for Systems Science and Engineering. This dataset
is updated hourly by the Associated Press and offers the cumulative COVID-19
cases and death rates for Dallas County and the US. The table from [9] that
contains the Dallas data is named 2 cases and deaths by county timeseries

and contains values for

• state

• date

• total population

• cumulative cases

From this dataset, we utilized the cumulative cases and total population

data values to fit our SEIR model. Since the SMU dataset starts on August 8,
2020, we filtered the Dallas County dataset to only include data from August 8
onwards. The source [9] includes data for all counties in the US. To filter only
the Dallas County data, we used the search query below.

SELECT * FROM 2 cases and deaths by county timeseries

WHERE state="Texas" AND location name="Dallas"

The United States COVID-19 data, also provided by John Hopkins Univer-
sity, is found in the GitHub repository found in [2]. This repository aggregates
data from various sources including the World Health Organization (WHO), the
European Centre for Disease Prevention and Control (ECDC), and the United
States Center for Diseases Control (CDC).

3.3 Analyses

Using the datasets described in the previous section, we approximated the
parameters of our custom model by fitting each dataset to a standard SEIR
model [1]. Using the popular Python library SciPy [11], we were able to deter-
mine the best fit parameter values using a non-linear least squares method.

To estimate β and γ for the SMU SEIR model, we made use of published
values from [7] to establish a baseline for comparison, then we fit a standard
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SEIR model to the SMU, Dallas County, and United States data for two distinct
time periods; one being a 40-day period and the other a 171-day period. These
time periods were chosen based on the amount of SMU data that was available.
As a result of this process, we discovered surprising evidence suggesting that
the model parameters, β and γ, in a standard SEIR model are dynamic rather
than constant.

We made use of SEIR parameter values gathered in a study of the spread of
COVID-19 in Wuhan, China [7] as a baseline to determine whether our fitted
values for the SMU, Dallas, and US data were reasonable in magnitude.

When fitting the SEIR model to the SMU data with the non-linear least
squares optimization, we obtained β and γ values of 0.99 and 0.25 respectively
for the 40 day time period. There are two problems with these values. The
first issue is that the fitted β and γ values vary significantly when compared to
parameter values of 0.4 and 0.048 found in [7]. The second issue is with the β
value of 0.99: in the least squares optimizer, we fixed the interval of β and γ
parameters to be between [0,1]. We found, unsurprisingly, that too few data
points in combination with an insufficiently long time-scale resulted in the β
value reaching the boundary of the interval. Were no fixed interval to exist,
this would mean convergence to reasonable value would never occur for the β
coefficient.

There are a few possible explanations for this failed model fit. The signifi-
cant difference in size between the SMU population of 10,000 and the Wuhan
population of around 11 million suggests that our population size was much too
small to effectively model COVID-19 with a SEIR model. A second explanation
may be that the length of time for data collection is too small. A third expla-
nation is that the parameters for this disease are not constant (for examples of
models with varying parameters, see [3, 6, 8]).

To test the first hypothesis, we fit an SEIR model to the relatively larger
population of Dallas. With a population of around 2.5 million, we expected the
SEIR model to outperform the SEIR model fit on the SMU data and to more
closely resemble the model fit to Wuhan data in [7], however; this fit resulted
in β and γ values of 0.09 and 0.05 respectively for the 40-day time period;
see Table 2 and Figure 2. Here the β values for Dallas in the 40-day period
are roughly 4 times smaller that the Wuhan β values respectively. While the
Dallas population is significantly larger than the SMU population, the difference
between the Wuhan and the Dallas populations still remains large at around 8.5
million, suggesting that even the Dallas population is too small to fit a SEIR
model.

Then we fit an SEIR model to United States COVID-19 cases. The model
fit to the United States data produced β and γ values of 0.087 and 0.059 re-
spectively for the 40-day time period. Here the β value is 5 times smaller than
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Model Cumulative Cases Days Beta Gamma

SMU 534 40 0.99 0.25
SMU 990 171 0.58 0.35
Dallas 83306 40 0.090 0.05
Dallas 262738 171 0.0273 2.31E-10
US 7052359 40 0.087 0.059
US 26436155 171 0.029 2.00E-10

Table 2: Beta (β) and Gamma (γ) parameter values for SEIR models fit on
SMU, Dallas, and US datasets.

the value for Wuhan.

Next, we tested the second hypothesis by varying the time period of the data
used to fit the model. For the previous test, which varied the population size,
the time span of the data was only 40 days. For this test, the data spanned 171
days. For the SEIR model fit to the 171-day for SMU, the β and γ values were
0.58 and 0.35 respectively. Here the SMU data’s β value is roughly 45 percent
larger than the Wuhan value of 0.4 and the γ value is roughly 7 times larger
than the Wuhan value. When fitting to the Dallas 171-day data, the β and γ
values were 0.0273 and 2.31e−10 respectively. Compared to the Wuhan values,
the Dallas β value was roughly 15 times as small and the γ value was about 2e8
times smaller. Lastly, the US data for the 171-day period resulted in β and γ
values of 0.029 and 2e-10. Here the β value is 13 times smaller than Wuhan’s
value while the γ value is 2.4e8 times smaller.

Considering that the application of small, medium, and large population
sizes and the short and long time spans of 40 and 171 respectively failed to
produce β values that closely matched the magnitude of the values for the city
of Wuhan, we suggest that the parameters for the SEIR model are not constant.

In summary, the canonical SEIR model is a poor fit for the COVID-19 virus
when analyzing small populations at short timescales, as its limitations of con-
stant parameters cannot capture the true transmission dynamics.

4 Proposed Novel Model for SARS-CoV-2

In an effort to more realistically model the spread of the virus through a micro
scale scenario i.e. a university campus or other similarly sized population, the
SIR model must be extensively modified both categorically and with respect to
its group composition. To increase the granularity of analysis, the overall pop-
ulation has been split into two groups: commuters, which include off-campus
students, employees, and non-residential faculty; and residents, which consist
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A. SMU 40 Days B. SMU 171 Days

C. Dallas 40 Days D. Dallas 171 Days

E. US 40 Days F. US 171 Days

Figure 2: Each image A-F plots the standard SEIR curves for SMU, Dallas,
and US populations. Plots A, C, and E plot each population’s curve for a 40
day time period. Plots B, D, and F plot each population’s curve for a 171
day period. The curves included are the susceptible (blue), infected (red) and
recovered (green) curves. Note that the y-axis scale for plots C, D, E, and F is
in millions of people, while the scale for A and B is the actual number of people.
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solely of on-campus students. This bifurcation provides deeper insight into both
groups and their behaviors and relevant parameters. Both groups are composed
of five categorical states: susceptible (an individual yet to be infected), exposed
(a susceptible individual having made contact with an infectious non-isolated,
non-quarantined individual), infectious (an infected individual capable of prop-
agating further infection to the larger population), quarantined and isolated
(individuals in quarantine or in isolation, assuming they have been infected;
however they do not interact with the larger population and are rendered null
vectors), and lastly recovered (recovery is a suitable category in this case rather
than removed, as no one from the SMU community died as a result of infection).

Figure 3: Model Wiring Diagram: Two populations are considered: residential
students (red nodes in the top row) and commuter students (blue nodes in the
bottom row). S− refers to susceptible where Sr is the susceptible residential
population and Sc is the susceptible commuter population. Similarly E−, Q−,
I−, R− refer to exposed, quarantined and isolated, infected, and removed re-
spectively, and the relevant population by denotation of c or r. Black arrows
show the flux of the populations through through their respective states, while
the dashed arrows represent the possibility of intra- and inter-group transmis-
sion. Note σ(x(t)) is the exposure function, δ is the incubation rate, τ is the
rate of isolation/quarantining, and γ(t) is the recovery function.

This model places a heavy emphasis on what canonical models consider to
be β, the transmission turnover rate as a result of susceptible portion of a pop-
ulation interacting with the infected fraction. Many efforts have been made
to reliably measure β, but there exists no method for a population the size
of a relatively small university campus. In an effort to more accurately model
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transmission at the small-scale, the canonical β has been replaced with an trans-
mission function, σ(x(t)), with the hopes of accounting for the granularity of
such a small population. The transmission function is dependent on x(t), where
at the individual scale, x(t) represents the normal amount of persons an in-
dividual might come into infectious proximity of as a function of time. The
continuous transmission function σ(x(t)) is right-shifted by a value η, the num-
ber of persons an individual comes into contact with regularly, with a maximal
transmission value of 1, and minimum value of zero; as the risk a person takes
on increases, σ(x(t)) increases as, signifying high exposure risk sensitivity to
incremental persons encountered. As relative risk lessens, σ(x(t)) decreases,
showing less incremental risk taken on per person encountered. Risk in this
model is represented by a computed parameter r̄, and as this parameter tends
to zero, so does σ(x(t)).

In the SEIQR model, persons encountered are assumed to be quasi-infectious
and homogeneously mixed; that is persons encountered may or may not have the
virus. What matters here is the risk. The assumption is that the rate at which
the virus spreads is proportional to a function of the relative risk an individual
takes on.

4.1 Defining the risk function

In this section, we define a function, called the risk scalar function r̄, that de-
scribes the risk for an individual in terms of physical area, amount of time spent
in an area, population density, proximity to other individuals, and proportion
of individuals wearing masks in a given area. The computed risk value is then
used as constant parameter in the σ(x(t)) function.

An individual’s baseline risk is established by the average number of same
persons they frequently interact with on a daily basis. If every individual within
the population were treated as a node, then every edge within a reasonable dis-
tance (the high-risk infectious threshold being less than six feet according to the
CDC) could be considered a feasible transmission pathway between individuals.
From the simple quadratic relation,

f(η) =
η2 − η

2
(2)

where f(η) represents the total amount of edges between η nodes, it is easy
to calculate how many possible transmission routes a virus could take locally
among persons in a susceptible populations given the introduction of infectious
nodes. If on average a person comes into contact with the same η individuals
on a daily basis, a f(η) transmission pathway network exists, where a virus
poses the risk of infection via a transmission pathway. Additional risk is taken
on when a susceptible individual chooses to interact with an environment that
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has a higher population density which correlates to an increased exposure to
many more potential transmission pathways. If individuals choose to expose
themselves to a new environment, with an area A and population density ρ, the
number of persons they could encounter is A×ρ with the number of transmission
pathways

ρ2A2 − ρA
2

. (3)

Risk, represented later by the risk scalar function r̄, is proportional to the
relative percentage increase of transmission pathways a person is exposed to,
with relative percentage found by dividing Equation 3 by Equation 2, yielding

ρ2A2 − ρA
η2 − η

.

If
(ρ2A2 − ρA) = (η2 − η),

then a person takes on no additional risk from his established baseline exposure.

There is a distinction between total transmission pathways and local net-
work pathways an individual is exposed to. Within a present time frame, one
cannot truly know if exposure to an additional pathway will or will not carry a
pathogen; because of this, the total new pathways an individual is exposed to
are accounted for, as this represents the additional risk the individual takes on.
Total transmission pathways are not all feasible routes of transmission, nor are
they all active; pragmatically, only a very small percentage are actually active.
Total transmission pathways, or Edges, [E](t), are given by:

[E] =
(S + I)2 − (S + I)

2
− S2 − S

2
− I2 − I

2
= SI

The susceptible and infectious networks are subtracted out of the Edges
because neither group demonstrates intra-group transmission. The resultant
equation simplifies down to a simple two-group network. New cases that arise
from the previous day’s edges represent the apparent percent activation of those
edges or the total active transmission pathways from the previous time-frame.
The apparent activation of possible transmission pathways is a metric that can
only be calculated with retrospect, which makes such calculations for future use
impossible. To mitigate this, it is assumed that only local transmission pathways
within six feet are considered active. Quantitatively, this is represented by the
proximity constant pc within the the risk scalar function r̄.

Canonical models dictate that rates used for population flow from one cat-
egory to the next be constant; however, the behavior of the virus at the micro-
scale does not behave in such a fashion. Rather than a fixed rate constant, the
transmission function σ(x(t)) is used. Additionally, because it is the magnitude
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of the risk that dictates the rate at which persons flow from S to E categories,
if an individual takes on σ(x) risk in an environment (likelihood of exposure),
then the likelihood they were not exposed is represented by (1 − σ(x)), which
is shown by the ability of Exposed persons being able to flow back to the sus-
ceptible population.

The exposed pathway then feeds into two categories I and Q dictated by
an actual incubation rate α, with directional control given by τ , where τ rep-
resents the percentage of exposed persons put into quarantine or isolation (Q
category). The unique feature of this model is that it is assumed that the Q
categories from either population, although infectious, do not come into contact
with the susceptible populations. Both Q and I flow into the R category at a
rate γ. Because this model is multi-group, (split into residential and commuter
populations), each group has five respective ODEs, with interaction possible in
the event any infectious person from either population comes into contact with
any susceptible person from either population.

While this particular compartmental model will not be further analyzed,
its two functions, σ(x(t)) and γ(t) will be investigated further to show their
usefulness and predicative capability.

4.1.1 The risk function at the micro- and macro-scales

At the individual scale, the σ(x(t)) is defined as

σ(x(t)) =
er̄(x(t)−η)

1 + er̄(x(t)−η)

(
2er̄x(t)

1 + er̄x(t)
− 1

)
,

and shows the risk a person takes on relative to their normalized η value. As
described in the beginning of section 4.1, r̄ is a function of time. An individual
will frequent different areas, denoted Ai, that each have their own associated
risk value, rAi .The greater the risk scalar function value r̄,

r̄ =

n∑
i=1

(rAi · tAi)

the greater the incremental risk taken on by the individual. Every component
within the r̄ function is from the individual’s perspective, and accordingly is
applied to each area the individual frequents. The final r̄ value generated is the
weighted average (by percent of day spent in an area) of all the component rAi
values,

rAi =
(ρ2
Ai
Ai

2 − ρAiAi)
η2 − η

· pcAi · (1−mAi),

where pcAi is the proximity constant which conveys the percentage of edges or
transmission pathways of a given length in the area of interest, and mAi is the
percentage of individuals in an area Ai that are wearing masks.
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Area of Interest F ρ A pc m %t
Dorm room 1,468 0.0092 189.1 0.4053 0 35

Lab 50 0.0134 823.4 0.1189 0.99 2
Lecture 50 0.0222 882.7 0.1118 0.99 8

Auditorium 10 0.0176 2,914 0.03703 0.99 2
Gym 1 0.0118 9000 0.01254 0.5 4

Dining Hall 2 0.0513 29,816 0.00389 0.1 8
Library 1 0.0278 144,625 0.000816 0.75 17

Going Out 1 0.25 3000 0.18521 0 21
Outside 1 - ∞ 0 0 2

Table 3: Components of the risk scalar function: F refers to the area incidence,
ρ = people

ft2 , A is area of the region given in ft2, pc the percent of transmission

pathways under 6 ft, m = proportion of people wearing masks and %t refers to
the amount of time people are in the given area.

However, modeling interactions at the individual scale, and then applying
those interactions uniformly across the entire population assumes everybody
within the population also behaves uniformly. In reality, we know every indi-
vidual has a characteristic η value, and it follows that every individuals’ char-
acteristic σ(x(t)) is shifted to their respective η value.

Accounting for all behaviors is detrimentally complex, so rather than build
up from the individual scale, a solution might be to view behavior from a cam-
pus perspective, where the only constraint on population behavior is the time
spent in various areas, because η is fixed to the amount of the University popu-
lation on campus. From this perspective, rAi represents the fraction of relevant
transmission/contact pathways in a given area type relative to the entire campus
network. To maintain congruity between perspectives, an additional component
F representing the incidence of a given area type (i.e. 1500 dorm rooms, 2 dining
halls, etc.,) must be added to the rAi function for the campus’ perspective:

rAi = F ·
(ρ2
Ai
Ai

2 − ρAiAi)
η2 − η

· pcAi · (1−mAi).

Summing across time produces a time-weighted expression introduced at the
beginning of the section, which we call the risk scalar function.

As r̄ approaches zero, so too does σ(x(t)). This intuitively makes sense
as reduction of risk-laden behaviors would lower the transmission rate. Lower
social densities, higher mask-usage rates, and less time spent in high-risk areas
all contribute to the lowering of the r̄ value.

1When going off-campus, the proximity constant was assumed to be at least 5 × higher
than usual (Table 3).
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4.2 Derivation of the proximity constant

Lastly the generation of the proximity constant, pc, for a given area can be found
by integrating the probability density function from 0 to L, (the edge length
of interest), for an arbitrary amount of randomly distributed nodes in a given
square area, A. This process is of interest as every relevant area on campus was
approximated to be a square for simplicity.

The distance between two nodes on a Cartesian plane may be given by:

` =
√

(x2 − x1)2 + (y2 − y1)2.

Let x1, x2, y1, and y2 be independent and pulled from identical normal distri-
butions. The difference of two independent standard uniform random variables
is well known to have a standard triangular distribution. Were the expectation
value of the distance between randomly distributed nodes to be calculated for
a square area of one, we would have the following:

〈`〉 =

∫ 1

0

∫ 1

0

√
(∆x)2 + (∆y)22(1−∆x)2(1−∆y)d∆xd∆y

The solutions to “square-line picking” problems are well known [12] (see the Ap-
pendix for an alternate method of computing), and the exact probability density
functions are well known for R2 and R3; however, while the PDFs are exact,
they are pieced together, and are ostensibly continuous to the unaware eye. For
the purpose of simplicity, a function was created to approximate the true PDF
for edge lengths within a square. The function contains two fitting constants C
and k. Starting with the appropriate normalized triangular distribution, the
derivation of the approximating function is found as follows:

∫ L

0

N(kL−∆x)dx = 1

N

[
kL∆x− ∆x2

2

]L
0

= 1 −→ N =
1

L2(k − 1
2 )

To find the function that approximates the PDF up to L, the side-length of
the square with area A:

∫ ∫
N(kL−∆x)N(kL−∆y)d∆xd∆y
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Let ∆x and ∆y be represented by x and y respectively,

C(x, y) =

∫ ∫
N(kL−x)N(kL−y)dxdy = N2

(
k2L2xy − kLx2y

2
− kLy2x

2
+
x2y2

4

)

Assuming the triangular distributions are identical, then we can make the
substitution x = y. Therefore

C(x) = N2

(
k2L2x2 − kLx3 +

x4

4

)
,

and the PDF may be found by taking the derivative with respect to x,

P (x) = N2
(
2k2L2x− 3kLx2 + x3

)
.

Finally the tuning constant, C, will be added to better the fit,

P (x) = C ·N2
(
2k2L2x− 3kLx2 + x3

)
,

where k and C were found to be 1.09 and .975 respectively through experimental
simulations. The approximating function can be made a function of A, the
square area of interest where L2 = A, and for each area of interest within the
model the generalized function is:

PAi(`) =
C

Ai(k − 1
2 )2

(
2k2Ai`− 3k

√
Ai`

2 + `3
)
,

where ` is the edge/transmission pathway length. For every area of interest
there is a pc value that essentially confers the percent of edges that are high-
risk in that area. The motivation behind this computation can be appreciated
when areas with higher levels of social density are taken into account. The
number of edges is proportional to (ρ2

Ai
Ai

2 − ρAiAi), and were an arbitrary or
poor estimate of pc to be used, r̄ would be very inaccurate. pc is then:

pc =

∫ 6

0

PAi(`)d`

5 Mathematical Analysis: Representing Rt

The reproductive number R0 can be calculated when the model rates are con-
stants. In our case as the transmission and recovery rates are functions, we
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develop Rt as a dynamic (in time) representation of the reproductive number.

Using canonical equations, dividing dI
dt by dS

dt and then separating variables
yields: ∫ t

0

dI = −1

∫ t

0

ds+
N

R0

∫ t

0

1

S
ds,

and when integrated, we arrive at the following time independent equation:

It − I0 = −(St − S0) +
N

R0
(ln(St)− ln(S0))

It = I0 + S0 − St +
N

R0
ln

(
St
S0

)
However, when applied to a university setting these equations are not practical
for numerous reasons. These equations rely on canonical assumptions to retain
their validity when used for predictive calculations. Additionally, normal SIR
models account for only one wave of an infection, so to even attempt a predictive
calculation for a whole academic year, two calculations would be needed for two
semesters taking into account two separate initial conditions; even then, the
results would still be poor. Similarly, if we were interested in hypothetical
outbreak size (assuming that the infectious population started at 0 and will end
at 0, that S0 is approximately equal to N , and that the outbreak size can be
given in terms of the fraction of the population):

I(t) =⇒ I(∞)

S(t) =⇒ S(∞)

I∞ − I0 = S0 − S∞ +
N

R0

(
ln

(
S∞
S0

))
,

1− S∞
N

= f,

(R0 can be solved for as a function of the fraction of population succumbing to
the infection overall)

R0 =
− ln(1− f)

f
,

we would need to calculate two fractions, one per semester, or whatever unit
of time of interest. The sum of the fractions would theoretically give the total
outbreak size, but that is only under canonical conditions, so in reality, the
resultant calculation would be null as well. A dynamic reproductive number Rt
is more appropriate for a small population within a short time-scale. Such a
function would take into account the “surge-like” nature of a disease, seeing as
even at the university-scale, at least two actively-infectious peaks were observed.
Such a function would assume the form:

Rt =
σ(x(t))

γ(t)
.
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The function σ takes an input of people frequenting campus from the population
at time t according to the function x(t), outputting a transmission value. The
value x(t) would necessarily rise from and go to zero at the beginning and end
of each day respectively, as generally all people rise and sleep with the same
periodicity (locally); across the course of a semester the function as a whole
would decay, because people are removed from the susceptible population by
infection, leaving less individuals for the virus to spread to, and the force of
infection would periodically decay as well, making it harder for the virus to
spread within the campus community. Finally an element of periodicity would
be added to account for the first and subsequent smaller waves of the virus
through the community at large. A trial x(t) function could be:

x(t) = N · sin2(πt)e−t/k · sin2(ωt)

The expression sin(πt) ensures the function goes to zero at the end of each day,

e
−t
k ensures the function decays as time progresses with k being time in days,

and the sin(ωt) allows for the simulation of the “waves” of the virus, with ω
controlling the number of surges as seen in Figure 4. The sin(t) functions are
squared to ensure no negative values. A value of 0.0571 for ω will be derived in
the Discussion. As ω increases, the crests in the σ(x(t)) function become closer
together, giving the appearance of a constant coefficient, akin to the classical β.

At the micro-scale γ(t) is not constant either. As viral surges occur, the
number of people of recovering will periodically rise and fall in phase with
surge-timing. This periodicity, controlled by sin2(ωt), must rise and fall to
a maximum value, γm [to be interpreted as the fastest recovery period possible].
Those with the best health will of course on average recover much faster and gain
effective-immunity to the virus sooner than others, which means that over the
course of a semester, the recovery period will gradually become longer, because
those with poorer health are still recovering. A trial γ(t) function could be:

γ(t) = γm · sin2(ωt)e
−γmt
k

The dynamic reproductive number can then be tracked as described earlier.
Classically, R0 = β

γ , but this can also be interpreted geometrically as R0 =∫ t
0
βdt∫ t

0
γdt

, as canonically, β and γ are both constant coefficients. Congruently, if we

take:

Rk =

∫ k
0
σ(x(t))dt∫ k
0
γ(t)dt

and Rk · S0 > N , then an epidemic will occur within the community. A more
rigorous and intensive extension of this intuition can be seen by a stability anal-
ysis; for the simple SIR system substituted with σ(x(t)) and γ(t), the equations
and characteristic equation of its Jacobian matrix are [for a cleaner look, all
F (t) = F ]:
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A: ω = 0.0571 B: ω = 0.0571

C: ω = 100, 000 D: ω = 100, 000

Figure 4: For all σ(x(t)) plots parameters are: population size N = 10, 000,
average persons present on campus n = 3, 500, time period k = 110 [semester
length in days], and risk scalar r̄ = 0.001949 [calculated from data in 3]. For
Plots A and B ω = 0.0571 and for Plots C and D ω = 100, 000. For very
small values of ω, sampling interval does not make a noticeable difference in
function appearance; however, for very large ω values, sampling interval creates
a very noticeable difference in function appearance. At very large ω values,
σ(x(t)) appears to become constant (only being forced to decay by the negative
exponential term) as the time gap between each crest shrinks, approaching the
behavior of the canonical β transmission coefficient which is constant. Plots B
and D are meant to mimic two viral surges within a semester; ω and sampling-
interval in the case of Plot D-were chosen towards that end. For very large ω
values, sampling at discrete and equally spaced time intervals must occur, oth-
erwise canonical results will be observed (only one peak and very inaccurate
results for small populations and time-scales).
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dS

dt
= −σS I

N
dI

dt
= σS

I

N
− γI

dR

dt
= γI

(I3λ− J) =


λ+ σI

N
σS
N 0

−σI
N λ−

(
σS
N − γ

)
0

0 −γ λ

 = 0

with determinant

λ3 − λ2 ·
( σ
N
· (I − S) + γ

)
+ λ ·

(
σγI

N

)
= 0.

Assuming that at the beginning of the semester, an initial coordinate

E0 = (S(t0), I(t0), R(t0)) = (≈ N,≈ 0, 0)

exists, the determinant simplifies to

λ3 + λ2 · (γ(t)− σ(x(t))) = 0

λ1 = (σ(x(t))− γ(t)),−→ (λ2, λ3) = 0.

At t0 however, both σ(x(t)) and γ(t) will be zero due to the sin2(πt) term,
hence it is intuitive to extend the meaning of the eigenvalue solution as follows:

λ1 =

∫ k

0

σ(x(t))dt−
∫ k

0

γ(t)dt

An independent and congruent conclusion was found in [8]. If we broaden our
view to the total duration at point tk and λ1 < 0 then no significant outbreak
will occur and the system will essentially be asymptotically stable at the starting
point. Replacing β within the canonical SIR model with σ(x(t)) and γ for γ(t)
shows an immediate improvement in predictive capability not possible with
constant parameters as shown in in Figure 5.

6 Discussion

Here we proposed that canonical compartmental models with constant parame-
ters were ill suited for modeing the spread of SARS-CoV-2 on a college campus
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A: ω = 0.0571; sampled every 0.1 days B: ω = 0.0571; sampled every 0.1 days

C: ω = 100, 000; sampled every 0.1 days D: ω = 100, 000; sampled every 0.1 days

Figure 5: For all plots parameters are: population size N = 10, 000, average
persons present on campus n = 3, 500, time period duration k = 110 [semester
length], risk scalar r̄ = 0.001949, γm = 0.2941 for Plots A and B [8.4-day avg.
recovery period], and γm = 0.2817 for Plots C and D [8.3-day avg. recovery
period]. Plots A and C: SIR plots were created using Euler-integration with
a time step of 0.1 and using the σ(x(t)) values being sampled every 0.1 days;
S0, I0, and R0, were set to 0.9999, 0.0001, and 0 respectively. Plots B and D:
zoomed in y-axis.
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on a short timescale. To address this we developed an ODE-based model for the
spread of the disease for the Southern Methodist University campus, account-
ing for both residential and commuter student populations. The model includes
variable transmission and recovery rates, from which we derived a dynamic
expression Rt representing the reproductive number.

The practicality of Rt is that it gives insight as to when surges might occur.
The relative peak numbers of active-Infectious cases occur soon after σ(x(t))
reaches a local maximum. The insight here is that sin2(ωt) controls not only
the viral surge periodicity, but can tell us when they well occur as well. For
ω ≤ 0.2 ,when d

dtσ(x(t)) = 0, d
dtsin

2(ωt) = 0 also [at the crest of each surge];
it is then relatively easy to find the time-windows around tsurge when surges
in active-infectious cases will occur soon after. If ω ≥ 0.2 then the difference
in time between the crest of each surge becomes too small to be of practical
informative use and the number of surges becomes too numerous; i.e., the crests
become so numerous and close, σ(x(t)) is practically constant from crest to
crest.

d

dt
sin2(ωt) = 0

2ωsin(ωt)cos(ωt) = 0

ωsin(2ωt) = 0

Then in this instance, let n be constrained to the domain of non-negative integers
so that we may find the times t of importance as follows:

2ωtn = π + 2nπ

tn =
π(2n+ 1)

2ω

where n ≥ 0. In order to calculate a feasible value for omega, let us assume that
there will be evenly spaced viral surges, the number of which will be denoted
by the letter S, within the the time length k. It will take k

S2 days to reach the
first transmission value crest at t0. ω can then be rearranged for as follows:

k

S2
=
π(2n+ 1)

2ω
, n = 0

ω =
πS

k
−→ π ∗ 2

110
= 0.0571

Using the the ω value of 0.0571 calculated, the relevant values for t calculated
are days 28 and 83 for n = 0, 1 respectively; the t value of 138 for n = 2 is not of
interest as t2 ≥ k. A reasonable assumption to make would be that the peak in
active-infectious cases would occur 1-14 days after t0 and t1 due to the varying
incubation rate of the virus.

Trying to describe the granular aspects of viral transmission within a small
population and constrained time frame has proven to be very difficult; the lack
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of data-points, the variance in how other institutions have handled and imple-
mented COVID protocols is significant enough that comparisons are essentially
useless. The largest improvement in the SIR model was seen when the the
transmission parameter was allowed to assume variable values at essentially dis-
crete points in time separated by a qauntized time interval. The insight here is
that if N is sufficiently large, then the transmission coefficient may be treated
as constant; if not, a more rigorous treatment is necessary. The interactions
between all relevant individuals occur at discrete points in time, but the time
gap between each interaction is so small due to very large values of N and how
said population is distributed geographically. As seen in Figure 4 Plot C, when
ω is very large, σ(x(t)) is essentially constant, only being forced to decay by
the negative exponential. The fact that this essentially constant function has
to be sampled at equivalently spaced intervals- discrete quantized intervals-and
fits the raw data relatively well when used for SIR modeling, lends evidence to
the theory that the transmission parameter is not constant at the fundamental
level; it only appears so at the larger scale.

In fact, the σ(x(t)) trial function bears reminiscent characteristics of the
radial wave-functions used to model the electronic states of the hydrogen atom.
The similarity and successful usefulness is slightly eerie. The most appropri-
ate analogy would be that at the micro level, classical models simply are not
adept to describing what is fundamentally going on. Transmission is not truly
constant; it is discrete because interactions between susceptible and infectious
individuals are also discrete. Person A infects all of person B [persons are dis-
crete] and so on and so forth at different discrete points in time. It is only when
we zoom out to the macro scale that these discrete infections and overlapping
interactions appear continuous and constant; many mutually exclusive inter-
actions are happening simultaneously and very rapidly, giving the appearance
of continuity, and hence a constant parameter. It is now clear why more robust
and intricate models are necessary for an apt understanding at the small scale
and this is the beginning of that effort.

There are limitations to our study. The two most prominent are (1), the
inability to successfully replicate the results shown here when applied to another
similarly sized institution because of lack of data, and (2) the assumptions
made to simplify most college-students extremely volatile social behavior. Less
importantly, the impact of age distribution on SMU’s population was ignored as
an overwhelming majority of the population is between the ages of 18-23 which
essentially lumps the entire population into the same level of risk according to
the CDC.
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7 Appendix

7.1 Equations

dSr
dt

= Er(1− σrr(x(t)))− Sr
(
σrr(x(t))

Ir
Nr

+ σrc(x(t))
Ic
Nc

)
dSc
dt

= Ec(1− σcc(x(t)))− Sc
(
σcc(x(t))

Ic
Nc

+ σcr(x(t))
Ir
Nr

)
dEr
dt

= Sr

(
σrr(x(t))

Ir
Nr

+ σrc(x(t))
Ic
Nc

)
− Er(1 + δ − σrr(x(t))

dEc
dt

= Sc

(
σcc(x(t))

Ic
Nc

+ σcr(x(t))
Ir
Nr

)
− Ec(1 + δ − σcc(x(t))

dIr
dt

= δEr(1− τ)− γ(t)Ir

dIc
dt

= δEc(1− τ)− γ(t)Ic

dQr
dt

= δErτ − γ(t)Qr

dQc
dt

= δEcτ − γ(t)Qc

dRr
dt

= γ(t)(Qr + Ir)

dRc
dt

= γ(t)(Qc + Ic)

7.2 Transforming the risk function to space-dependent con-
tacts

To transform the σ(x(t)) function into a function dependent on risk-laden trans-
mission pathways or contacts (in this context, contacts are defined to be interac-
tions within 6 ft) rather than persons encountered, we must scale the the x-axis
accordingly:

σ(x) =
er̄(x−η)

1 + er̄(x−η)

(
2er̄x

1 + er̄x
− 1

)
−→ σ(x) = f(x)g(x)

where

f(x) =
er̄(x−η)

1 + er̄(x−η)

g(x) =

(
2er̄x

1 + er̄x
− 1

)
.
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Solving f(x) for x, we get

x =
ln
(
−f(x)
f(x)−1

)
r̄

+ η

Recall that

E(x) = r̄

(
x2 − x

2

)
,

which gives the number of transmission pathways in the total network that are
high risk. Substituting the expression for x into E, we have

Ef (x)

r̄
=

(
ln( −f(x)

f(x)−1 )
r̄ + η

)2

−
(
ln( −f(x)

f(x)−1 )
r̄ + η

)
2

Similarly we get the following expression when we solve g for x:

Eg(x)

r̄
=

(
ln( g(x)+1

1−g(x) )
r̄

)2

−
(
ln( g(x)+1

1−g(x) )
r̄

)
2

.

Rearranging for σ(E(x)), we get

σ(E(x)) = f(Ef (x))g(Eg(x))

σ(E(x)) =
e
r̄(1−2η+

√
1+8

Ef (x)

r̄
2

1 + e
r̄(1−2η+

√
1+8

Ef (x)

r̄
2

e r̄(1+

√
1+8

Eg(x)
r̄

2 − 1

1 + e
r̄(1+

√
1+8

Eg(x)
r̄

2

 ,

where σ(E(x)) gives the transmission coefficient as a function of the risk-laden
transmission pathways/contacts.

7.3 Alternate method for computing the distribution of
edge lengths

A transformed Gaussian distribution will be sufficient to calculate shorter edge-
lengths; it must be transformed and scaled such that the x− axis is only con-
tinuous from 0 to ∞ because no edge-length may be negative:

P (x) =
1√

2πσ2
e

(
− (x−µ)2

2σ2

)

A change of variables is required to make the function begin at the origin; we
will put x in terms of y such that the function will only be real from 0 to ∞:

y =
x2

√
kA
−→ x = y

1
2 (kA)

1
4
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P (y) =
1√

2πσ2
e

(
− (y

1
2 (kA)

1
4 −µ)2

2σ2

)

Assuming we can transform the standard deviation and mean into functions

dependent on A, in its form as the median edge length
√

2A
2 ,

µ =

√
2A

2
× 1

c1

σ =

√
2A

2
× 1

c2

we now have a probability density function that is dependent on the given area
of interest; as the area increases the curve will elongate and flatten, and as
the area decreases, the curve will contract and spike. This is intuitive as the
total area dictates the space nodes may occupy, and therefore the distribution
of relevant edge lengths. The constants c1 and c2 are for fitting purposes and
maybe be found numerically via empirical simulations. The unknown k may be
found by integrating P (y) from from 0 to ∞, and once found, the function will
be pseudo-normalized (dependent on the choices of c1 and c2):

∫ ∞
0

1√
2πσ2

e

−1
2

(
(y

1
2 (kA)

1
4 −µ)

σ

)2

dy = 1

Using u-substitution,

α =
(y

1
2 (kA)

1
4 − µ)

σ
−→ dy =

2σ(ασ + µ)

(kA)
1
2

)dα,

applying the substitution, extracting the constants, and fully expanding we
have: ∫ ∞

−µ
σ

2σ(ασ+µ)

(kA)
1
2√

2πσ2
e

−1
2 ( α)2

dα = 1

2σ

(kA)
1
2

√
2πσ2

∫ ∞
−µ
σ

(ασ + µ)e
−1
2 ( α)2

dα = 1

2σ

(kA)
1
2

√
2πσ2

(
σ

∫ ∞
−µ
σ

αe
−1
2 ( α)2

dα+ µ

∫ ∞
−µ
σ

e
−1
2 ( α)2

dα

)
= 1,

Subsequent integration yields:

2σ

(kA)
1
2

√
2πσ2

(
σe

−1
2 (−µ

σ )
2

+ µ
√

2π
)

= 1

which can be rearranged and simplified to solve for k:

k =
2

Aπ

(
σe

−1
2 (−µ

σ )
2

+ µ
√

2π
)2
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k =
1

π

(
1

c2
e

−1
2

(
−c2
c1

)2

+
1

c1

√
2π

)2

The constants c1 and c2 were empirically found to be 0.905 and 2.505 respec-
tively, yielding a value of approximately 2.4572212 for the constant k.

For each of the areas listed in Table 2, pc could be generated by integrating∫ 6

0
P (l(x))dl(x) numerically.
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