Agent-Based Modeling Grants Insight into the
Effect of Policy Responses to COVID-19

Alec Mason
Advised by Brandilyn Stigler

Department of Mathematics
Southern Methodist University
Dallas, Texas 75205

September 2020

Abstract

This project aimed to create a complex agent-based model for pattern
analysis in the spread of SARS-CoV-2, the virus that causes COVID-19.
The model incorporates a variety of adjustable parameters pertaining to
social distancing, testing, contact tracing, mortality, infectiousness, and
hospital capacity. Variables that can be studied include cumulative in-
fections, peak infections, peak day, death count, and case-fatality rate.
This model was then used to conduct experiments involving thousands of
simulated runs to analyze the effects of movement reduction and testing
procedures on preventing and slowing the spread of the virus. These ex-
periments found that the cumulative and peak case counts roughly follow
a sigmoidal curve, with a range of movement reduction in which the rate
of decline is maximized. In addition, the data suggested that while less
stringent reductions in movement are not as effective in reducing cumu-
lative case counts, they can still be effective in lowering the peak case
count. In regards to testing, the experiments found that while contact
tracing is slightly effective in reducing cumulative case counts, it is more
effective in reducing peak case counts if positive individuals severely limit
their contact with others. Incorporation of isolation mechanisms, whether
mandatory or voluntary, can magnify these reductions in cases. We con-
clude that an optimal strategy involves a combination of significant reduc-
tions in movement, measures to reduce infectiousness, maximizing testing,
contact tracing, and mandatory or voluntary isolation mechanisms for the
confirmed infected. The model was implemented in NetLogo version 4.1.3.



1 Introduction

The spread of the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) and its corresponding disease, COVID-19, has had a profound impact
on economic and social operations around the world. The high infectiousness
of SARS-CoV-2 has led to exponential growth, with some studies estimating
the average reproductive number to be as high as 3.28 [5]. This means that
each infected individual will infect more than three others on average. While
the case-fatality rate of SARS-CoV-2 is nearly universally estimated to be lower
compared to recent epidemic coronaviruses such as SARS-CoV and MERS-CoV,
the stronger tendency towards exponential growth due to faster spread has led
to case numbers, and subsequent death counts, unlike any recent epidemic [3].
A recent study places the international infection fatality rate of SARS-CoV-2
at 0.66%, with rates increasing with age [7]. However, hospital capacity may
play a role in the case-fatality rate, with the rate of fatality increasing as access
to care becomes more scarce.

Agent-Based Models (ABMs) can be an effective tool for modeling the col-
lective effects of individual behaviors [6]. Each individual agent in the model
is given a set of rules that they will follow in reaction to their environment.
Randomness is sometimes incorporated to account for the complexity of real-
life behaviors and environmental factors. Each individual model run represents
a single resultant path created by the combination of behaviors and factors oc-
curring in that run. While this means that individual model runs should not
be interpreted as quantitatively predictive, averaging repeated model runs with
varying initial starting conditions can grant insight into averages and larger
patterns [1].

This project aims to create a model capable of capturing the effect of various
parameters on the spread of COVID-19 through a population using the NetLogo
agent-based modeling software [10]. The model, based loosely upon the “Virus”
model created by U. Wilensky [9], allows for the adjustment of parameters
like movement reduction, social distancing regulation thresholds, and testing
availability. Outcomes of the model that can be analyzed include cumulative
cases, peak-case count, cumulative deaths, and case-fatality rate.

In Section 2, the parameters, variables, and processes within the model are
presented and described. In Section 3, experiments are conducted via aggre-
gation of multiple runs to test the effects of various parameter settings, and
recommendations for policy are made based on the data. Finally, the results,
implications, and utility of the model are further discussed in Section 4.

2 Model

The model is described using the Overview-Design Concepts-Details protocol
[4] and implemented in NetLogo version 4.1.3.
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Figure 1: Screenshot of the user interface of the COVID-19 model described in
this research

2.1 Purpose

This model aims to study the effect of various parameters on the spread and
impact of the SARS-CoV-2 virus in a community. One of the parameters that
this model simulates is participation in social distancing efforts. Characterizing
the effects of different levels of movement reduction can elucidate the threshold
at which the efforts become most effective. In addition to depicting individual
participation, community thresholds for implementing, relaxing, and potentially
reinstating social distancing regulations are also parameters that can be studied
in this model. Another goal of this model is to analyze the effect of testing
and quarantine programs on viral spread. The effects of these parameters will
show the effectiveness of different levels of daily randomized testing within the
community, and can potentially grant insight into which actions are best taken
after a positive test. The model is also capable of simulating a contact tracing
program. Viral factors such as infectiousness and mortality rate can be adjusted,
and community factors like population density and hospital capacity can also be
altered and studied in this model, allowing their impacts on spread and fatality
to be studied.

2.2 Entities, state variables, and scales

The entities within the model represent individuals within a community expe-
riencing an outbreak of SARS-CoV-2. These entities, hereinafter referred to as
“turtles” in the terminology of NetLogo, can exist in one of five states:

e healthy (represented by a green coloration)
e infected but not confirmed (red)
e confirmed infected (pink)

e infected and isolated (purple)



e immune (gray)

The number of turtles present at the start of the simulation can be adjusted via
the people slider, on a scale of 0 to 500. The only slider directly affecting the
behavior of the turtles is avg-movement-reduction, which is a scale from 0.1
to 1 that represents the average number of movements per turtle per day. It is
assumed that turtles practicing social distancing will move an average of once
every 7 days. So the model calculates what percentage of turtles will need to
social distance in order to achieve this average daily movement. This calculated
parameter becomes the social-distance-participation. When each turtle
is created, they generate a number from 0 to 1. If the number they generate is
lower than the social-distance-participation parameter, they will always
follow social distancing guidelines. If they roll higher, they will always ignore
the guidelines.

The properties of the disease itself can be adjusted via 4 sliders. The infec-
tiousness of the virus, expressed as the likelihood that an infected turtle will
infect a healthy turtle on contact, can be adjusted via the infectiousness per-
centage scale from 0 to 100. The duration of the disease, which is interpreted
as the time in which a turtle is infectious, can be adjusted via the duration
scale from 0 to 99 days. Disease fatality is determined by a combination of two
sliders, under-capacity-mortality and over-capacity-mortality, both of
which are on a percentage scale from 0 to 100, though it should be noted that
the former slider can never exceed the latter. The under-capacity-mortality
slider determines the likelihood that a turtle infected when the number of in-
fected turtles does not exceed the hospital capacity will die. Likewise, the
over-capacity-mortality slider determines the likelihood of death for an in-
dividual infected when the number of infected turtles exceeds the hospital ca-
pacity.

The remainder of the sliders and switches pertain to community regula-
tions in regards to social distancing, healthcare availability, and testing. The
testing-availability slider can be adjusted on a percentage scale from 0 to
100 at increments of 0.25%, and it determines the percentage of the population
that will be tested daily at random. Turtles who are randomly selected to be
tested and are currently in the sick? but not in the confirmed? state will be
assigned to the confirmed? state. If the global isolate-confirmed state is set
to true, the confirmed? individual will be put into the isolated? state. The
infected subpopulations act as a hierarchy, so turtles in the isolated? state are
also in the confirmed? state, and all confirmed? turtles are also in the sick?
state. The availability of healthcare resources in the community can be adjusted
via the hospital-capacity slider, which ranges from a minimum of 0 and a
maximum equal to the people slider at initialization. It should be noted that
this slider represents the number of infections within the community at which
the hospital system will be overloaded, including cases who do not necessarily
require hospitalization. For example, if one quarter of cases require hospitaliza-
tion, and the hospital has 20 beds, then the hospital-capacity should be set



at 80.
number of beds

hospital capacity = fraction requiring hospitalization

The final sliders and settings refer to the enactment of social distancing regula-
tions. The threshold of active confirmed cases for starting social distancing is de-
termined by the start-soc-dist-threshold slider, which can be adjusted on a
scale of 0 to the size of the population. Likewise, the stop-soc-dist-threshold
slider determines the number of confirmed cases at which social distancing reg-
ulations will end, and the slider can be adjusted from 0 to the size of the popu-
lation. The threshold for stopping social distancing cannot exceed the threshold
for starting social distancing. It is also important to note that these thresholds
are based on the number of confirmed cases, not total cases. This is done to
account for the fact that community governments only have data for the cases
that they have tested for. Therefore, if testing-availability is set to 0%,
social distancing regulations will never start unless the threshold for starting is
set to zero confirmed cases.

2.3 Process overview and scheduling

After the go procedure is initiated, a series of procedures are sequentially re-
peated each tick: progress, move, infect, recover, test, update-colors,
update-global-variables, tick, and update-plot. The progress procedure
increases the sick-count variable on all of the currently infected turtles by 1.
This procedure also resets the color of all patches to black to allow the radius
indication for contact tracing to show.

In the move procedure, the first step is to determine if social distancing
regulations are currently in effect. If the global soc-dist-regs variable is
currently set to false, all turtles who are not confirmed to be infected will rotate
randomly up to 100 degrees left or right and move forward one patch. Turtles
who are confirmed infected will generate a random number from 0 to 7. If this
number is less than 1, the turtle will rotate randomly up to 100 degrees in either
direction and move forward one patch. If the generated number is greater than 1,
the turtle will not move on that tick. If the global soc-dist-regs variable state
is currently set to true, turtles who were assigned the no-soc-dist state upon
initialization and are not confirmed to be infected will move as normal, rotating
up to 100 degrees in either direction and moving forward one patch. If the
turtle has no-soc-dist set to false or is confirmed infected, they will generate
a random float number from 0 to 7. If the generated number is less than 1,
they will rotate randomly 100 degrees in either direction and move forward one
patch. Otherwise, the turtle will not move on that tick. See Figure 2 for a
flowchart.

The infect procedure tells all non-isolated infected turtles to check for other
turtles on the same patch. For each healthy, non-immune turtle on the same
patch, a random float number is generated between 0 and 100. If this number
is less than the infectiousness parameter, the healthy turtle will carry out
the get-sick procedure and become infected. In the get-sick procedure, the
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Figure 2: Flowchart depicting the move procedure steps run by each turtle.




sick? turtle variable is set to true, the turtle’s color is changed to red, and the
turtle is assigned a mortality likelihood. If the current count of infected turtles is
higher than the hospital-capacity parameter, the turtle will be assigned the
over-capacity-mortality as their mortality variable. If the current count
of infected turtles is lower than the hospital-capacity parameter, the turtle
will be assigned the under-capacity-mortality.

Next, the recover procedure asks all infected turtles to compare their
sick-count variable to the duration global parameter. If a turtle’s sick-count
is greater than the duration, they are asked to generate a random float num-
ber from 0 to 100. If the number is lower than the turtle’s mortality vari-
able, the turtle will die. If the number is higher, the turtle will carry out the
become-immune procedure. In this procedure, all infection-related variables are
set to false, the sick-count and mortality variables are set to 0, the immune?
state is set to true, and the turtle color is changed to gray.

The test procedure asks a certain fraction of the turtles, equivalent to the
testing-availability parameter, the status of their sick? variable. If the
selected turtle has sick? set to true, they will start the confirm-case proce-
dure. If the global contact-trace procedure is set to true, this will also trigger
testing of all turtles within a three patch radius. A cyan indicator will flash
to indicate the radius. In the confirm-case procedure, the infected turtle has
their confirmed? variable set to true, in addition to the sick? variable which
is already set to true. This extra variable will slow their movement in the move
procedure discussed earlier. If the global isolate-confirmed procedure is set
to true, the turtle will also have their isolated? variable set to true. As dis-
cussed in the infect procedure explanation, the isolated? variable prevents
the turtle from infecting others.

The update-colors procedure is a housekeeping procedure that ensures that
turtle colors are correctly assigned by the end of the tick, specifically within the
infected subgroups. Turtles who are sick but not confirmed are colored red.
Turtles who are confirmed sick but not isolated are colored pink. Turtles who
are confirmed sick and isolated are colored purple.

The update-global-variables procedure ensures that reporting variables
and variables that cause changes in model behavior are adjusted to reflect cur-
rent conditions. The percent of turtles infected, percent of turtles immune,
and the peak information reporting variables are updated. In addition, the
important social-dist-regs variable state is reassessed at this step. First,
the procedure asks if the current number of confirmed infections is under the
stop-soc-dist-threshold parameter. If this is true, the procedure will set
soc-dist-regs to false. Next, the procedure will ask a complex if-statement.
If the current count of confirmed infected turtles is greater than or equal to the
start-soc-dist-threshold parameter, and the soc-dist-res-gauge variable
is not set to 1 when the allow-soc-dist-restart global state is set to false,
then soc-dist-regs will be set to true and soc-dist-res-gauge will be set
to 1. The soc-dist-res-gauge variable allows the model to know if social
distancing has already been started once in the run, and will prevent it from
starting the regulations again in the case that allow-soc-dist-restart is set



to false. After the update-global-variables procedure, the model moves for-
ward one tick and continues.

Finally, the update-plots procedure updates the graphs that can be seen
on the model interface. The model then repeats from the beginning of the go
procedure until stopped.

2.4 Design concepts
2.4.1 Emergence

There are a variety of measures that can be used to evaluate the results of
each model run. One of the most important measures is the cumulative case
count, which allows for a broad interpretation of the effectiveness of virus con-
tainment. A low number on this measure could indicate that global parameters
were effective in preventing viral propagation. However, many real responses
to COVID-19 have focused on slowing the spread of the virus rather than com-
pletely containing it. In order to interpret the effectiveness of “flattening the
curve,” the measures of peak cases, peak day, and deaths are useful. The peak
cases measure allows the model interpreter to conclude how high the peak of
active cases was, and the peak day measure allows for the interpretation of peak
delay that usually results from efforts to “flatten the curve.” The death count
measure, in conjunction with the case fatality measure, is useful in that it helps
interpret how overloaded the hospital system was during the model run. If the
model spent There are also some measures that are useful in analysis of specific
parameters. The Boolean larger-second-peak becomes true when a new case
record is set after a period of lower case counts.

2.4.2 Adaptation

Individual turtles in this model exhibit adaptation most prominently in the
move procedure. If they are assigned to the group who follows social distancing
regulations upon generation, they will slow their movement when the global
social distancing regulations are on. The same is true for any turtle who is
confirmed to be infected. There is no specific goal from the turtle’s perspective,
and turtles do not actively avoid infected turtles.

2.4.3 Sensing

Turtles in this model are assumed to be able to sense when social distancing
regulations are in effect and adjust their movement accordingly. They are also
assumed to know when they have been tested for the virus. Infected turtles can
sense when a healthy turtle is on the same patch, and they will potentially pass
the infection on.



2.4.4 Interaction

Turtles interact with one another in the event of spreading the infection. When
a healthy turtle occupies the same patch as an infected turtle, they will interact
and the healthy turtle has a chance to also become infected. In the event that
contact tracing is enabled, the newly confirmed turtles will interact with turtles
within a three patch radius to refer them for testing as well.

2.4.5 Stochasticity

This model assumes that movement, social distancing participation, selection
of turtles for testing, infectiousness, and mortality are at least somewhat ran-
dom. At setup, turtles are assigned to groups determining participation in social
distancing precautions based on generated random numbers. For confirmed in-
fected turtles or turtles who are practicing social distancing, the likelihood of
movement on that tick is determined by a random number. The randomness of
assignment to social distancing groups and movement determination are used
to simulate an average decrease in movement during social distancing. This
average is determined by the avg-movement-during-soc-dist slider. When
movement occurs, it can happen in any random direction within a 100-degree
range, centered on the current facing direction. When an infected turtle occu-
pies the same patch as a healthy turtle, a random number is used to determine
whether or not the infection will be passed to the healthy turtle. This is used
to simulate the contagiousness of the virus. In addition, this randomness ac-
counts for somewhat random factors in real life like exposure time and viral
load. While the assignment of mortality likelihoods is not random, the chance
a turtle will die at the end of its infection course is based on a random num-
ber generation. Since mortality varies from place to place in reality and can
vary based on a variety of personal and environmental factors, this randomness
allows for simulation of a rate without strictly enforcing it.

2.4.6 Collectives

A variety of collectives are formed in this model, each with varying impacts on
the model. Turtles are assigned into collectives that determine whether or not
they will comply with social distancing regulations at setup. Individually, the
group that one is in will impact the individual’s movement behavior. Globally,
these collectives have a direct effect on average movement and an indirect effect
on infection propagation.

Probably the most impactful collectives are the population groups: healthy,
sick, confirmed, isolated, and immune. When in the sick group, turtles will
pass the infection on to healthy turtles. Turtles in the confirmed group will
slow their movement, no matter if they normally obey social distancing. The
number of turtles in the confirmed group will determine whether or not the
social distancing regulations are on or off. Turtles in the isolated group will
slow their movement and be unable to infect other turtles. As isolated? is



a subgroup of confirmed?, which itself is a subgroup of sick, turtles in this
group will be assigned to all three groups.

Another set of collectives is formed in regards to mortality. Turtles who
become sick when hospitals are at or over capacity will be assigned to the high
mortality group. Likewise, turtles who become sick when the hospitals are
under capacity will be assigned to the low mortality group. The only effect
each collective has is during the recover procedure, in which those in the high
mortality group will be more likely to die.

2.5 Initialization

When the model is initialized via the command setup, all monitors are set to
the default values, and a number of agents, equal to the people slider, are gener-
ated. The agents, referred to as turtles, are placed at random on a 35 x 35 grid of
patches. Each turtle generates a number from 0 to 1. If the number they gener-
ate is greater than the social-distance-participation parameter, calculated
from the avg-movement-during-soc-dist slider, their no-soc-dist variable
will be set to true, which means they will ignore any regulations on social dis-
tancing until they test positive. All turtles execute the get-healthy procedure,
which sets their color to green and sets the sick? and immune? variables to
false. One turtle is selected at random to execute the get-sick procedure. This
procedure sets their sick? variable to true. The get-sick procedure also asks
the for the global count of turtles with the sick? variable set to true. If this
count is higher than the hospital-capacity parameter setting, the mortality
variable for the newly sick turtle is set to over-capacity-mortality. Other-
wise, the mortality is set to the under-capacity-mortality. Once the setup
of the turtles is complete, the plots are cleared, and the global variables are
updated to reflect current counts of infected, immune, and healthy turtles.

3 Analyses and Recommendations

Agent-based models are useful in analyzing patterns and overarching concepts.
Since each model run represents one possibility resulting from the combination
of various random events, analysis of averages and fit lines after multiple runs
is a useful tool. The BehaviorSpace tool within NetLogo allows for automation
of the setup, run, and data collection processes of the model which permits
simulation experiments to be performed to test the effect of parameter values
on the model.

For the first experiment, the BehaviorSpace rules were set up such that
only the avg-movement-during-soc-dist parameter would vary while the rest
remained constant. The setting of the movement parameter was set to change
every 500 runs, for a total of 6000 runs. The thresholds for social distancing were
both set at zero cases so that social distancing would remain true throughout
the run. Each run was set to automatically terminate when the count of infected

10



Parameter Constant or Varied? Value(s)
0.1,0.15,0.2, 0.25,
avg-movement-during-soc-dist varied 0.3,0.4,0.5, 0.6,
0.7,0.8,0.9, 1.0
people constant 500
infectiousness constant 50
duration constant 14
testing-availability constant 0
isolate-confirmed constant FALSE
allow-soc-dist-restart constant FALSE
contact-trace constant FALSE
hospital-capacity constant 15
over-capacity-mortality constant 5
under-capacity-mortality constant 0.5
start-soc-dist-threshold constant 0
stop-soc-dist-threshold constant 0

Figure 3: Parameter settings for the social-distancing movement experiment.
See Figures 4 and 5 for results.

turtles reaches zero. Data on cumulative infections, deaths, peak infections, and
peak day were collected; see Figure 3 for a full list of parameter settings.

The raw comma-separated value data was exported to OriginPro 2020 [8],
and a scatter plot was generated depicting the cumulative infections in each run
against the social distancing movement parameter setting. The resultant graph
is shown in Figure 4, fitted with a sigmoidal function.

The plot shows that reductions in movement have an effect on overall disease
spread, but the effect on overall case counts is slight until movement is reduced
to below half of normal movement. There is a steep decline in overall case counts
between 0.2 and 0.4. From this, it can be interpreted that containment of the
virus would require intense reductions in movement.

Anonymized cell phone data collected by Johns Hopkins University researchers
shows that few counties reached this reduction amount [2]. At the peak of in-
fections in April, many major counties in the United States were at a higher
ratio such as Philadelphia County, PA, at a ratio of 0.52; Los Angeles County,
CA, at a ratio of 0.56; and Harris County, TX, at a ratio of 0.62. One of the
locations with the most reduced movement in April was New York City with
a ratio of 0.35. According to the modeling data, this puts the city within the
range of maximal change in effectiveness in preventing viral spread.

As complete containment of COVID-19 has proven to be difficult, many
governments have opted instead to focus on slowing the spread of the virus. The
hope is that such actions will prevent hospital overload and minimize mortality
rate during the period of drug and vaccine development. Figure 5 shows the
plot of peak infections versus the average movement parameter, fitted with a
sigmoidal function.

While both the cumulative and peak-infection plots appear to follow a sig-
moidal shape, the upper asymptote on the peak-infections plot does not appear

11
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Figure 4: Scatter plot of cumulative infections in the social-distancing movement
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as flat. This means that smaller reductions in movement can have a significant
effect on the infection count at the peak, with a higher steep range of 0.3 to
0.5. This supports the idea that slowing the spread of COVID-19 is easier to
accomplish, and many counties in the United States might have achieved at
least some reduction in peak infections even with a small reduction in move-
ment. However, it is important to note that the range in which these steeper
declines occur is dependent on the infectiousness of the virus and the population
density. For example, lowering the infectiousness will increase the width of the
range and raise the values necessary. Lowering the population density will have
a similar effect. This means that measures that reduce infectiousness such as
mask wearing may allow communities to achieve the same reduction in cases
with less reduction in movement.

One noticeable feature in Figures 4 and 5 is that both have runs with very
low infection rates even at high movement parameter settings. This suggests
that there may be two major paths that the disease curve can take from the
beginning of the outbreak: a high infection path and a low infection path, with
very few runs falling in between.

Based on the results of the movement variation experiment, we suggest that
communities reduce their movement rate to the minimum possible while main-
taining some degree of community economic health. Ideally, this rate should be
0.5 or lower if slowing the spread is the goal, and lower than 0.4 if containment
is the goal. These goals should be even lower in communities with low hospital
availability or high senior populations.

The second experiment that was conducted analyzed the effect of various
testing and follow-up methods. By default, individuals in this model who test
positive reduce their movement to one-seventh of their normal rate until they
are no longer sick, mimicking once a week movement. Selection of testing re-
cipients is random among turtles which are not currently confirmed?. If the
contact-trace global procedure is set to true, each positive test triggers an
automatic test on all turtles within a 3 patch radius of the confirmed turtle.
If the isolate-confirmed global procedure is set to true, confirmed infected
turtles will lose their ability to infect other turtles.

This experiment aims to see what effect each of these settings has on the
infection rate at different values for the testing-availability parameter; see
Figure 6 for the parameter settings in the BehaviorSpace. The BehaviorSpace
experiment was run four times, one for each combination of the contact-trace
and isolate-confirmed global procedures. In each experiment, 500 runs were
conducted for each testing-availability setting, resulting in 7000 runs per
BehaviorSpace experiment and 28000 runs all together.

The raw data from these experiments was then exported to Microsoft Excel,
and a custom macro was used to calculate averages for cumulative and peak
infections at each level of testing availability. The average data for each experi-
ment was plotted in OriginPro 2020, with the full range shown in the left panel
of Figure 7.

The data suggest that the addition of contact tracing alone grants slight im-
provement in cumulative infection counts. Complete isolation of the confirmed,
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Parameter

Constant or Varied?

Value(s)

testing-availability

varied

0,0.25,0.5,0.75, 1,
1.5,2,2.5,4,5, 10,25,
50, 90

contact-trace

constant (between runs)
varied (between exps)

FALSE (exps 1 and 3)
TRUE (exps 2 and 4)

isolate-confirmed

constant (between runs)
varied (between exps)

FALSE (exps 1 and 2)
TRUE (exps 3 and 4)

people constant 500
infectiousness constant 50
duration constant 14
avg-movement-during-soc-dist constant 1
allow-soc-dist-restart constant FALSE
hospital-capacity constant 15
over-capacity-mortality constant 5
under-capacity-mortality constant 0.5
start-soc-dist-threshold constant 0
stop-soc-dist-threshold constant 0

Figure 6: Parameter settings for the testing availability and procedure exper-
iments. Each experiment tested the full range of the testing-availability
parameter. Experiments 2 and 4 had contact-tracing set to true and experi-
ments 3 and 4 had isolate-confirmed set to true. Experiment 1 had neither
procedure enabled as a control. See Figures 7 and 8 for results.
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Figure 7: Plots showing the average cumulative infections in the four testing
experiments; see Figure 6 for parameter settings. Standard testing protocol
is shown in black with square markers (experiment 1); with contact tracing is
shown red with circular markers (experiment 2); with isolation of the confirmed
is shown in blue with triangular markers (experiment 3); and the experiment
with both contact tracing and isolation is shown in green with diamond markers
(experiment 4). The left plot shows the average cumulative infections versus
testing availability for the four experiments with full range. The right plot
shows the average cumulative infections versus testing availability for the four
experiments, zoomed into the range from 0-5% testing availability.
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Figure 8: Plots showing the average peak infections versus testing availability
for the four experiments. The left plot shows the average peak infections versus
testing availability for the four experiments with full range. The right plot shows
the average peak infections versus testing availability for the four experiments,
zoomed into the range from 0-5% testing availability. Standard testing protocol
is shown in black with square markers; contact tracing is shown red with circular
markers; isolation of the confirmed is shown in blue with triangular markers;
and the experiment with both contact tracing and isolation is shown in green
with diamond markers.

however, appears to be very effective in stopping the disease from spreading
completely. It is important to note, however, that this experiment tested ranges
that are likely too high for human societies to achieve. Testing more than 5% of
the population per day is not realistic for most communities and governments.
The right panel of Figure 7 shows the same graph zoomed into the range of
0-5% testing availability.

The data suggest that, in realistic ranges, the addition of contact tracing
alone will not lower overall infection counts. However, if those who test positive
completely isolate themselves, it is possible to significantly reduce the spread of
the disease even in lower testing availability ranges.

Plots from the same experiments for average peak infections are shown in
Figure 8, with full range shown in the left panel and realistic range shown in the
right. Unlike with cumulative infection counts, peak infection counts appear to
be much more strongly impacted by the mere implementation of contact tracing.
This corresponds well to the social distancing variation data that suggested less
stringent policies may still have a significant effect on the speed of spread despite
having little influence on cumulative infection counts. As with the cumulative
infection data, isolation of the confirmed can lead to even larger improvements
in peak infection counts.

Based on the data from the testing availability variation experiment, we
suggest that communities work to maximize testing rates while implementing
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contact tracing. Communities should also conduct randomized survey testing
regularly to find asymptomatic carriers. Forced isolation of the confirmed may
not be politically or logistically feasible, especially in countries that value in-
dividual freedom. However, providing voluntary quarantine locations such as
repurposed hotels to allow infected individuals to self-isolate could provide a
similar effect on infection counts. Governments could also provide no-contact
delivery services for necessities to allow infected individuals to isolate at home.

4 Discussion

This model and the experiments conducted on it aimed to provide insight into
the effectiveness of policies such as social distancing and testing in curbing the
spread of SARS-CoV-2. The data indicate that while stringent responses like
severe movement reduction and complete isolation of all confirmed infections
are most effective in containing the virus, less intense policies still have the
potential to slow the spread and prevent hospital overload and unnecessary
deaths. The experimental data leads us to recommend that communities re-
duce their average movement by at least half, and that governments maximize
testing availability and implement contact tracing and some degree of infection
isolation. Where it is not politically or logistically expedient to enforce a quar-
antine, governments should provide venues for voluntary isolation and provide
services like no-contact delivery of essentials for confirmed infected individuals.
In order to reduce unnecessary exposure, governments might also consider pro-
viding financial support for non-essential workers to stay home and businesses
to remain closed. Combining various policy responses, including reducing move-
ment, increasing testing, contact tracing, encouraging infection isolation, and
reducing infectiousness by wearing masks, will allow for more flexibility while
still achieving the same reduction in cases.

It should be noted that this modeling process has limitations. First, the
experiments that were run cannot provide concrete numbers for movement re-
duction and testing availability that apply to every community or situation.
Factors like population density and infectiousness reducing measures like mask
wearing may shift the threshold for maximal reduction in case counts. Com-
munities should adjust the model parameters to match their specific conditions.
Further research is needed to quantify the average chance of infection upon con-
tact under various circumstances. However, the main assertions still stand that
less movement usually leads to an improvement in case counts, and reducing cu-
mulative infections requires much more stringent measures than reducing peak
infections.

Another limitation of this model that testing is random under standard pro-
tocol and that results are processed instantly. An improved model may include
more subclasses in the sick? category that accounts for symptomaticity, with
symptomatic individuals having a certain probability of seeking out a test. The
model could also be improved by adding a delay between testing and confirma-
tion to simulate real logistical issues.
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This model also cannot simulate high-risk groups such as front-line workers
and the elderly when determining infection risk and mortality. These values
rather operate on averages, meaning that community leaders will need to adjust
parameters to account for this for their specific population breakdown.

Models are some of the most effective tools in understanding current and
potential future conditions during a disease outbreak. They help leaders and
individuals make decisions that can influence future outcomes for the better.
While no model is perfect, studying patterns present across multiple modeling
strategies can be effective in making informed decisions.
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