

Introduction

Gene regulatory networks control many life processes. An important problem in systems biology is to reconstruct a model of the network from existing laboratory data. A major challenge is to validate predictions made by these data-driven models. While designing new experiments would be the most desirable, the cost involved is often prohibitive. Gold standard networks (GSNs), which are knowledge-driven models built from existing knowledge, have become necessary tools for validation. Therefore building **comprehensive** GSNs is imperative.

We extended an existing GSN for *C. elegans* by

- 1. classifying interactions as either positive or negative (<u>signs</u>).
- 2. distinguishing between direct and indirect regulation (*directedness*).

Background

Tissue development in *C. elegans* has been well studied. In [2] the authors presented a preliminary, biological model for the regulatory network based on a wildtype time course data. In [5], the authors extended the model to include interactions from knock-out data; however the authors did not include signs or directedness.

Fig. 1: First GSN, presented in [2].

Fig. 2: Second GSN, presented in [5].

The genes in the network can be categorized as follows: • Blue = maternal genes Yellow = ectoderm (skin) genes

- Grey = mesoderm (muscle) genes
- Brown = genes of mixed activity
- Green = other

CLASSIFYING SIGNS OF REGULATORY INTERACTIONS IN GENE NETWORKS

Jessica Otah

Rachel Crusius

Data

Several sources were used to infer signs and directedness of the interactions. Most inferences were made from the pairwise knockout experiments shown in the matrix [6]. We also used the following references for targets of the genes listed below. Most experiments were conducted using reporter genes.

- *pal*_1: [1], [2]
- *elt*-1: [2]

- *lin*-26: [4]
- hnd-1: [2]
- *hlh*–1: [3]

Methods

The interactions in Figure 2 were classified according to signs and directedness. Signs and directedness were determined from the matrix above as follows:

- **Positive** regulation was assigned to nodes with a green dot
- **Negative** regulation was assigned to nodes with a red dot
- **Direct** regulation was assigned to nodes with a square
- **Indirect** regulation was assigned to nodes w/o a square

Signs and directedness were determined from the other sources by reading the articles and consulting with an expert [7].

References

- . J. Ahringer (1997). Development 124.
- 2. L. R. Baugh *et al* (2005). *Development* 132.
- 3. T. Fukushige and M. Krause (2005). *Development* 132.
- 4. R. Pocock *et al* (2004). *Development* 131:10.
- 5. B. Stigler and H. Chamberlin (2012). *BMC Systems Biology* 6:1.
- 6. I. Yanai et al (2008). Molecular Systems Biology 4:163.
- 7. H. Chamberlin, Prof. of Mol. Gen., The Ohio State University.

size = magnitude, color = significance, square = veast 1-hvbrid interaction

Dr. Brandilyn Stigler

direct in [6]:

- currently exists.

Discussion

We present a more comprehensive knowledge-driven model for *C. elegans* tissue development than

It can improve validation for data-driven models. 3. It can used in building consensus models.