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Problem

We want to recover a linear model from data,
ideally PMU measurements, that describes the
rotor dynamics in a power network.

”

Power Network as

We follow the approach provided in [1, 2].
They consider the power network as a con-
nected graph § = (V,&) with buses as nodes
V =1{1,2,...,n} and transmission lines as edges
E C V x V. Generally, a bus can host dif-
ferent combinations of generators and loads,
or it may even be a simple junction node.
We assume that each bus hosts a generator,
otherwise we may use Kron reduction as in |3],
so that the power network is modeled as a com-
pletely connected graph.

Swing Equation for

Recall that the linearized Swing Equations for
networks (SEN) are of the form

Mé§"” + D6’ +Léd = b,

where M and D are the diagonal matrices of
inertia and damping coefficients, and L € R™**"
is the susceptance Laplacian matrix L = L > 0
whose (7, 7)-th entry is given by

_bi,ja if (7’7]) = 87
(L);; =< 2 biy it =,

\ 0, otherwise.

This model can be written as a first order system
of differential equations:
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X =
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the SEN take the form
x' = Ax+Bu with u=1.
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Dynamic Mode Decomposition (DMD)

DMD is a data-driven modeling approach where the data is usually sampled with homogeneous time
step h, i.e., tx.1 = tr + h. The data, m snapshots each containing n state-variables, is arranged into
matrices X, Xy € R?X(™~1) that are used to recover dynamical modes. For details see [4].
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We recover an estimate

. . . — X2 %3 - xm
of A from data which is optimal | | |
in the least square sense, since X; ~UXV*

A =arg min |X;—MX ~ —1
g min X, 1|7 A~ X, VETIU*
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Least Square Structure Imposed (LS-iol

We try to recover the dynamics for the SEN, but the DMD matrices may not preserve the structure of
the matrices ML and M~!D, thus we use the input-output DMD approach (ioDMD). For details
see |5, 6], and then we apply a regression to enforce the structure that we want.
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The figures below show the quality of the recovered dynamic response for a synthetic 3 generator
network, and where the eigenvalues are located.
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