# **Subordinated Processes for Solar Irradiance Simulation Cait Berry and Will Kleiber**

Department of Applied Mathematics, University of Colorado at Boulder Work supported by NSF

## Problem Setup

**Overall Goal:** Capture variability of one-second solar irradiance data using subordinated Gaussian processes for use in understanding how distributed energy resources like rooftop solar affect grid operations.

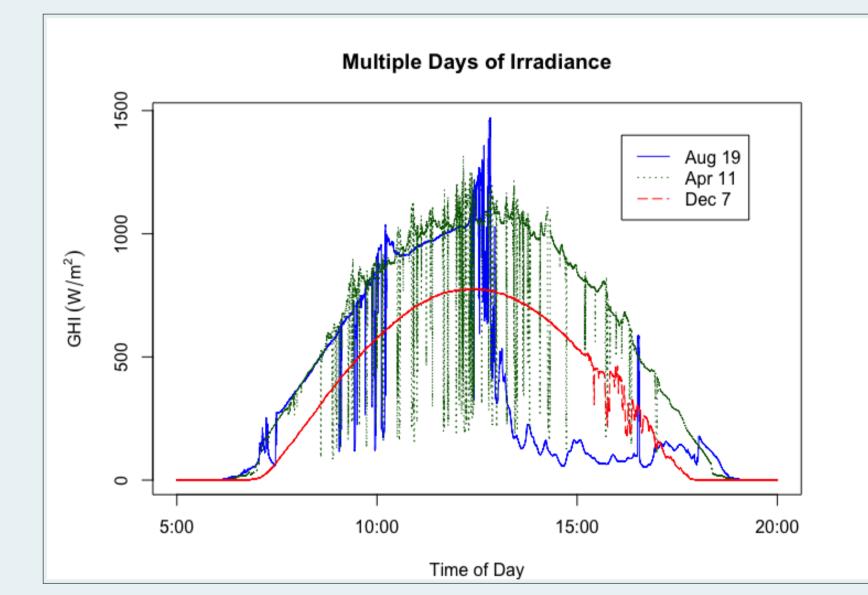


Figure: Observed global horizontal irradiance (GHI) every second for three select days of the year.

## Data

- > One-second resolution GHI ( $W/m^2$ ) measurements from a set of pyranometers in Hawaii
- Clear Sky GHI (CSGHI) is calculated from NSRDB data using spline interpolation for each day of the season (June, July, August).
- The Clear sky index (CSI) be defined as:

$$CSI(t) = \frac{GHI(t)}{CSGHI(t)}$$
(1)

at time point t.

Modeling is done with transformed data:

$$Z(t) = \log(\text{CSI}(t))$$

### Model

where  $\Phi$  is the cdf of a Gaussian random variable. Then our model is X(t):



where:

## Estimation Approach

(2)

where  $\widehat{P_X}$  and  $\widehat{P_Z}$  are empirical spectral densities of a simulated and observed irradiance time series, respectively.

Let  $f_Z(\cdot; \Theta)$  and  $F_Z(\cdot; \Theta)$  be the pdf and cdf, respectively, of  $Z(\cdot)$ . Define  $W(\cdot)$  as  $W(t) = \Phi^{-1}(F_Z(Z(t); \Theta))$ (3)

$$X(t) = W(\beta S(t)) \tag{4}$$

where X(t) is a subordinated Gaussian process (SGP) with:

 $\blacktriangleright$   $W(\cdot)$  is a mean zero Gaussian process with Matérn covariance function with parameters  $(\nu, \rho)$ 

 $\triangleright$   $S(\cdot)$  is a subordinator, a non-negative and non-decreasing process, defined elow

 $\triangleright$   $\beta > 0$  is a scaling parameter

The subordinator:  $S(t) = \sum_{\ell=1}^{N} \alpha_{\ell} \phi_{\ell}(t)$ 

 $\blacktriangleright \phi_{\ell}(\cdot)$  are I-spline basis functions

 $\triangleright \alpha_{\ell}$  are random variables drawn from estimated distributions

 $\blacktriangleright$  N = # of knots + degree + 1

1. Aggregate  $Z(\cdot)$  for June/July/August data, assume each observation z is an independent sample from pdf  $f_Z(\cdot; \Theta)$  to be given by:

 $f_Z(z;\Theta) = egin{cases} (0.995) \sum_{k=1}^3 \lambda_k f_k(z; heta_k) & z \leq .995 \ ext{percentile} \ (0.005) f_4(z; heta_4) & z > .995 \ ext{percentile} \end{cases}$ 

Using EM, estimate the MLE for  $\Theta = (\lambda_1, \lambda_2, \lambda_3, \theta_1, \theta_2, \theta_3, \theta_4)$  where  $\theta_k$  is a vector of parameters for the distribution functions  $f_k$ , which are Gauss, Gauss, Gamma, and Pareto respectively.

2. Estimate  $\{\alpha_1, ..., \alpha_N\}$  for the I-spline using a local variance model 3. For X(t) a SGP subordinated by S(t), estimate parameters  $\theta = \{\beta, \nu, \rho\}$ using approximate Bayesian computation (ABC) via:

$$\underset{\theta}{\operatorname{argmin}} \int \left(\widehat{P_X}(\omega) - \widehat{P_Z}(\omega)\right)^2 \mathrm{d}\omega$$



**Applied Mathematics** UNIVERSITY OF COLORADO BOULDER

## Results

(5)

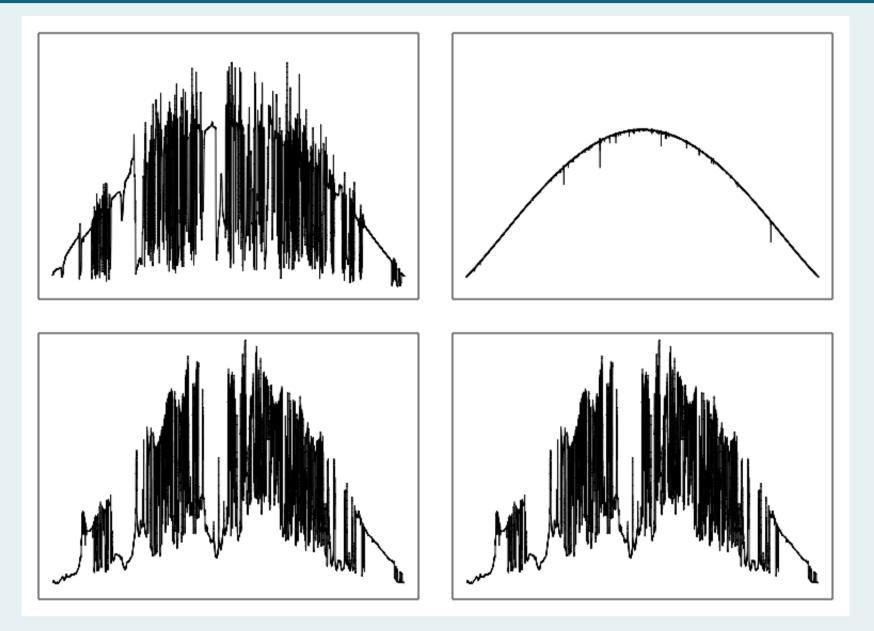


Figure: Simulations from proposed SGP (top left) and a GARCH model (top right); real data (bottom row)

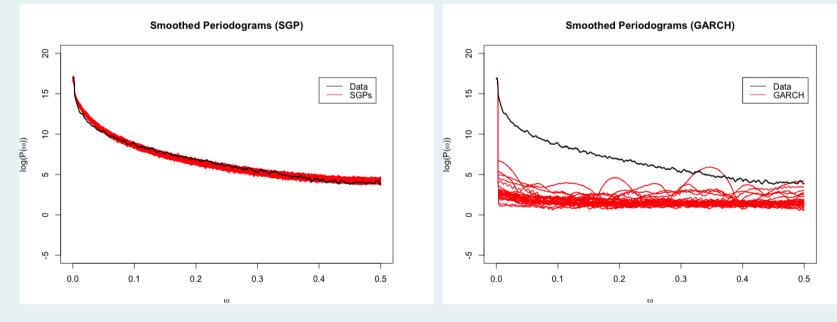


Figure: Smoothed periodograms of simulations (red) compared with that of a day of data (black) for the SGPs (left) and a GARCH model (right)

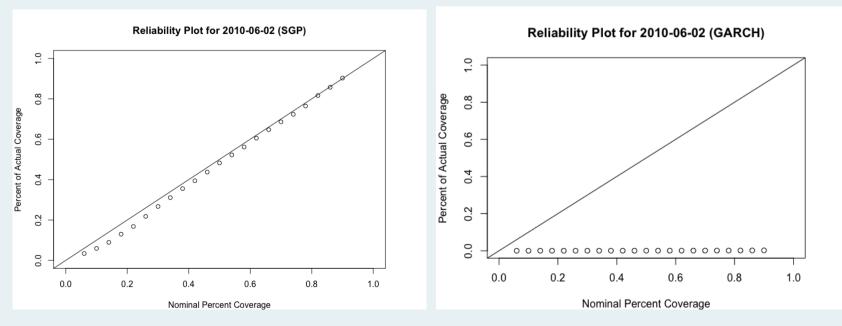


Figure: Reliability plots based on 300 simulations of the SGPs (left) and a GARCH model (right)