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Problem Setup
Overall Goal: Capture variability of one-second solar
irradiance data using subordinated Gaussian processes
for use in understanding how distributed energy resources
like rooftop solar affect grid operations.

Figure: Observed global horizontal irradiance (GHI) every
second for three select days of the year.

Data
▶ One-second resolution GHI (W/m2) measurements

from a set of pyranometers in Hawaii
▶ Clear Sky GHI (CSGHI) is calculated from NSRDB

data using spline interpolation for each day of the
season (June, July, August).

▶ The Clear sky index (CSI) be defined as:

CSI(t) =
GHI(t)

CSGHI(t)
(1)

at time point t .
▶ Modeling is done with transformed data:

Z (t) = log(CSI(t)) (2)

Model
Let fZ(·; Θ) and FZ(·; Θ) be the pdf and cdf, respectively, of Z (·). Define W (·) as

W (t) = Φ−1(FZ(Z (t); Θ)) (3)
where Φ is the cdf of a Gaussian random variable.
Then our model is X (t):

X (t) = W (βS(t)) (4)
where X (t) is a subordinated Gaussian process (SGP) with:
▶ W (·) is a mean zero Gaussian process with Matérn covariance function

with parameters (ν, ρ)

▶ S(·) is a subordinator, a non-negative and non-decreasing process, defined
below

▶ β > 0 is a scaling parameter

The subordinator: S(t) =
∑N

ℓ=1 αℓϕℓ(t)
where:
▶ ϕℓ(·) are I-spline basis functions
▶ αℓ are random variables drawn from estimated distributions
▶ N = # of knots + degree + 1

Estimation Approach
1. Aggregate Z (·) for June/July/August data, assume each observation z is an

independent sample from pdf fZ(·; Θ) to be given by:

fZ(z; Θ) =

{
(0.995)

∑3
k=1 λk fk(z; θk) z ≤ .995 percentile

(0.005)f4(z; θ4) z > .995 percentile
(5)

Using EM, estimate the MLE for Θ = (λ1, λ2, λ3, θ1, θ2, θ3, θ4) where θk is a
vector of parameters for the distribution functions fk , which are Gauss,
Gauss, Gamma, and Pareto respectively.

2. Estimate {α1, ..., αN} for the I-spline using a local variance model
3. For X (t) a SGP subordinated by S(t), estimate parameters θ = {β, ν, ρ}

using approximate Bayesian computation (ABC) via:

argmin
θ

∫ (
P̂X(ω)− P̂Z(ω)

)2
dω

where P̂X and P̂Z are empirical spectral densities of a simulated and
observed irradiance time series, respectively.

Results

Figure: Simulations from proposed SGP (top left) and a
GARCH model (top right); real data (bottom row)

Figure: Smoothed periodograms of simulations (red)
compared with that of a day of data (black) for the SGPs
(left) and a GARCH model (right)

Figure: Reliability plots based on 300 simulations of the
SGPs (left) and a GARCH model (right)


